Unique Implementation with Market-Based Interventions

Alessandro Dovis U Penn and NBER Rishabh Kirpalani Wisconsin

St. Louis Fed May 2023

Motivation

In large class of economies

- Competitive equilibria can attain the efficient outcome (2nd welfare thm)
- But coordination failures can lead to suboptimal outcomes (1st welfare thm does not hold)
 - Static coordination problem: Diamond-Dybvig, Cole-Kehoe
 - $\circ\,$ Dynamic coordination problem: Alvarez-Jermann, Gu et al

Role of policy to uniquely implement desired outcome

This paper

- Firm's manager must raise fixed amount to invest from
 - Private investors
 - Know investment's profitability but static coordination problem
 - Government
 - Big player but does not have information about investment
- Multiple private equilibria
 - Efficient allocation is equilibrium outcome
 - $\circ~$ Also equilibria where profitable investment projects not funded
- Study best robust policy
 - Maximize value under most adversarial equilibrium selection
 - Focus on market mechanism
 - Government intervention can depend on market outcomes (prices)
 - Show it is wlog

Results

- Efficient allocation cannot be uniquely implemented
- But it can be approximated arbitrarily closely
- Governments must commit to fund inefficient investment to guarantee that good investment are undertaken for sure
 - Cost to distinguish good and bad investment projects
 - $\circ~$ But can make their probability small
- Standard moral hazard not present under optimal policy
 - Increasing probability that good projects are funded increases manageer's incentives to exert effort

Related literature

- Unique implementation with private contracts
 - Winter (2004), Halac-Kremer-Winter (2020), Camboni-Porcellachia (2021)
 - Role of collateral
- Market mechanism
 - $\circ\,$ Valenzuela-Stookey-Poggi(2020)
 - $\circ~$ No coordination problem without policy
- Unique implementation in Ramsey problem
 - Atkeson-Chari-Kehoe (2010), Bassetto (2005), Sturm (2022), Barthelemy-Mengus (2022)
 - Diamond-Dybvig (1983), Roch-Uhlig (2018), Bocola-Dovis (2019)
 - $\circ~$ Full information
- Governments vs. markets
 - Acemoglu-Golosov-Tsyvinski (2008)
 - $\circ~$ They consider info vs. IR, we info vs. coordination and show complementarity
- Companion paper: dynamic coordination problem

Simple economy

Environment

- t = 0, 1
- Continuum of non-atomistic investors
 - $\circ~{\rm Risk}$ neutral and outside option return of R>1
 - $\circ~$ Endowment E in period 0
- $\bullet\,$ Firm's manager has investment opportunity that requires K
- If investment undertaken
 - Output: $y = \pi(\theta + \nu, \epsilon)$
 - $\circ \ \theta, \nu \ {\rm are \ realized \ in } t=0, \ \varepsilon \ {\rm is \ realized \ in } t=1$
 - $\epsilon \sim F(\epsilon)$, support of y is $[0, \infty)$, and $\int \pi(\theta + \nu, \epsilon) dF(\epsilon) = \theta + \nu$
- If no investment
 - $\circ~$ Output: ν (think of ν as collateral)
- Investors know (θ, ν) in period 0, ε is realized in period 1
- Efficient allocation: **Invest iff** $\theta \ge \mathsf{RK}$

Private equilibria

- Given (θ, ν)
- Manager offers contract: $(R^{I}(\epsilon), R^{N})$.
 - $\circ R^{I}(\varepsilon)$: return for lenders conditional on investment
 - $\circ~R^N{:}\mathrm{return}$ for lenders conditional on no investment
 - $\circ \ q \ {\rm price} \ {\rm of} \ {\rm such} \ {\rm a} \ {\rm contract}$
 - $\circ \ B: {\rm quantity} \ of \ {\rm such} \ contract$
- Feasibility

$$R^{I}(\varepsilon) \leqslant \frac{\pi(\theta + \nu, \varepsilon)}{B}$$
$$R^{N} \leqslant \frac{\nu + qB}{B}$$

• Manager is residual claimant

Timing

- (θ, ν) are realized • Let $z = \theta + \nu$
- Manager chooses a contract
- \bullet Coordination device ξ is realized
- Investors decide whether to lend

Private equilibrium

A private equilibrium is a debt contract $(R^{I}(\theta, \nu, \varepsilon), R^{N}(\theta, \nu))$, an amount of debt $B(\theta, \nu)$ and debt prices $q(B, \theta, \nu, \xi)$ such that:

• $\left(R^{I}\left(\boldsymbol{\theta},\boldsymbol{\nu},\boldsymbol{\epsilon} \right),R^{N}\left(\boldsymbol{\theta},\boldsymbol{\nu} \right),B\left(\boldsymbol{\theta},\boldsymbol{\nu} \right) \right)$ solve

$$\max_{\mathsf{R}^{\mathrm{I}}(\varepsilon),\mathsf{R}^{\mathrm{N}},\mathsf{B}} \int_{0}^{1} \left[\mathbb{I}\left(\xi\right) \int \max\left\{\pi\left(z,\varepsilon\right) - \mathsf{R}^{\mathrm{I}}\left(\varepsilon\right)\mathsf{B},0\right\} d\mathsf{F}\left(\varepsilon\right) \right. \\ \left. + \left(1 - \mathbb{I}\left(\xi\right)\right)\left(\nu - \mathsf{R}^{\mathrm{N}}\right) \right] d\xi$$

subject to feasibility

- $q\left(B,\theta,\nu,\xi\right)$ satisfies the investors' optimality condition

$$q(B, \theta, \nu, \xi) = \frac{1}{R} \left[\mathbb{I}(\xi) \int R^{I}(\varepsilon) dF(\varepsilon) + (1 - \mathbb{I}(\xi)) R^{N} \right]$$

• $\mathbb{I}(\xi) = 1$ if $q(B, \theta, \nu, \xi) B(\theta, \nu) \ge K$ and $\mathbb{I}(\xi) = 0$ otherwise

Debt contracts

Wlog, can consider debt contracts

 Investors payout conditional on investment is

$$R^{I}(\varepsilon) = \min\{1, \pi(\theta + \nu, \varepsilon)/B\}$$

- $\circ~$ Investors payout conditional on no investment is either
 - If collateralized

$$R^N = q + \frac{v}{B}$$

- If not collateralized

$$R^N = q$$

• Equilibrium price

$$q(\theta, B) = \frac{1}{R} \left[\mathbb{I}A(\theta, B) + (1 - \mathbb{I}) q(\theta, B) \right]$$

where

$$A(\theta, B) \equiv \int \min\{1, \pi(\theta, \varepsilon)/B\} dF(\varepsilon)$$

Multiple equilibria if collateral is scarce

Suppose that $\nu \ge (R-1) K$

- If $\theta \ge RK$: unique equilibrium with investment
- If $\theta < RK$: unique equilibrium with no investment

Suppose that $\nu < (R-1) K$

- If $\theta \ge RK$: equilibrium with investment coexists with one without
- If $\theta < RK$: unique equilibrium with no investment

Intuition

If collateral is abundant, $\nu \ge (R-1) K$:

- $\bullet\,$ Can always raise K w/ collateralized debt
- Guarantee return R even if investment project is not funded
- Unique equilibrium outcome is efficient

If collateral is scarce, $\nu < (R-1)\,K$:

• W/out investment, cannot guarantee return R if $qB=K,\,R^N=1$

$$R^{N} \leqslant \frac{\nu + qB}{B} < R$$

- Cannot design contracts to make investment dominant strategy
- Thus, there always exist inefficient equilibrium where $\theta > RK$ but qB < K and the investment project is not funded

Can government uniquely implement efficient outcome?

Government intervention

Assume $\nu = 0$

- $\bullet~{\rm Government}$
 - Can finance investment by itself
 - $\circ~$ Lacks knowledge about θ
 - Focus on market mechanism
 - Intervention depends on market outcome (B,q)
- Timing
 - $\circ~{\rm Gov't~commit~to~fund~project}$ with probability $\bar{\eta}(B,q)$ if qK < K
 - $\circ~\theta$ observed by entrepreneur and investors
 - \circ Entrepreneur issues debt B
 - $\circ \ {\rm Sunspot} \ \xi \ {\rm realized}$
 - $\circ~{\rm Price}~{\rm of}~{\rm debt}~q$ realized
 - $\circ~{\rm If}~qB < K$ manager can ask gov't for assistance
 - Gov't transfers K-qB with prob. $\bar{\eta}\left(B,q\right)$

- Given (θ, B)
- The debt price is

$$q = \frac{1}{R} \mathbb{I}A(\theta, B) + \frac{1}{R} (1 - \mathbb{I}) \left[(1 - \overline{\eta}(B, q)) q + \overline{\eta}(B, q) A(\theta, B) \right]$$

 \bullet Probability of investment, $\sigma,$ is

$$\label{eq:states} \begin{array}{l} \circ \ \sigma = 1 \ \mathrm{if} \ qB \geqslant K \\ \circ \ \sigma = \bar{\eta}(B,q) \ \mathrm{if} \ qB < K \end{array}$$

Can take two forms:

• Investment undertaken without gov't intervention

 $qB \ge K$ $q = \frac{1}{R}A(z, B)$ $\sigma = 1$

• Investment undertaken with gov't intervention

$$qB < K$$
$$q = \frac{\bar{\eta}(B, q)}{R - 1 + \bar{\eta}(B, q)} A(z, B)$$
$$\sigma = \bar{\eta}(B, q)$$

 $\Sigma(\theta, B \mid \overline{\eta})$: investment probabilities consistent w/ equilibrium

Debt issuance decision

- Debt issuance optimal given belief about equilibrium selection
- Beliefs are drawn from the set $\Sigma\left(\boldsymbol{\theta},\boldsymbol{B}\mid\boldsymbol{\bar{\eta}}\right)$

$$\mathsf{B}\left(\boldsymbol{\theta},\boldsymbol{\nu}\right)\in\arg\max_{\mathsf{B}}\int\zeta\left(\mathsf{B},\boldsymbol{\sigma}\right)\boldsymbol{\sigma}\boldsymbol{\Pi}\left(\mathsf{B},\boldsymbol{\theta}\right)d\boldsymbol{\sigma}$$

for some $\zeta(B, \cdot) \in \Delta(\Sigma(\theta, \nu, B(\theta, \nu)|\eta))$ where

$$\Pi\left(\mathsf{B},\boldsymbol{\theta}\right) \equiv \int \max\left\{\pi\left(\boldsymbol{\theta},\boldsymbol{\varepsilon}\right) - \mathsf{B},\mathsf{0}\right\} \mathsf{dF}\left(\boldsymbol{\varepsilon}\right)$$

• If $\Sigma(\theta, B | \bar{\eta})$ is singleton, it reduces to

$$B\left(\boldsymbol{\theta},\boldsymbol{\nu}\right) \in \arg\max_{B}\boldsymbol{\Sigma}(\boldsymbol{\theta},B)\boldsymbol{\Pi}\left(\boldsymbol{B},\boldsymbol{\theta}\right)$$

Best robust policy

Use most adversarial criterion from the gov't perspective

• Highest investment probability if $\theta < RK$:

 $\sigma = \max \Sigma \left(\theta, B \left(\theta \right) | \bar{\eta} \right)$

• Lowest investment probability if $\theta > RK$:

 $\sigma = \min \Sigma \left(\theta, B \left(\theta \right) | \bar{\eta} \right)$

• Managers choose debt to minimizes the value of the worse equilibrium subject to their IC

Require

$$\Sigma(\theta, B|\bar{\eta}) \neq \emptyset \text{ for all } (\theta, B).$$

W/out intervention \Rightarrow worst eqlbr'm has no investment

Cannot uniquely implement the efficient allocation

- Let efficient outcome be $B^*(\theta),\,q^*(\theta)$ with investment iff $\theta \geqslant RK$
- Suppose \exists policy that uniquely implements efficient all'n
- If $\theta < RK \Rightarrow$ no investment takes place $\circ q = 0, \bar{\eta} (B, 0) = 0$ for all B
- Now suppose $\theta > RK$
 - $\circ~$ Worst private equilibrium has q=0 and no investment
 - $\circ~$ Because $\bar{\eta}\left(B,0\right)=0,$ this is also an eq with intervention

Cannot uniquely implement the efficient allocation

- Let efficient outcome be $B^*(\theta),\,q^*(\theta)$ with investment iff $\theta \geqslant RK$
- Suppose \exists policy that uniquely implements efficient all'n
- If $\theta < RK \Rightarrow$ no investment takes place $\circ q = 0, \bar{\eta} (B, 0) = 0$ for all B
- Now suppose $\theta > RK$
 - $\circ~$ Worst private equilibrium has q=0 and no investment
 - $\circ~$ Because $\bar{\eta}\left(B,0\right)=0,$ this is also an eq with intervention

To avoid no investment when θ high then need η
 (B, 0) > 0

 Ex-post inefficient investments are necessary

Ex-post inefficient investments are necessary

Approximate efficient allocation

- Consider a sequence of $\{\bar{\eta}_n\}$ indexed by parameter $h_n>0$
- \bullet For any θ^* and corresponding $B=B^*(\theta^*)$ let

$$\bar{\eta}_{n}(B,q) \equiv q \frac{(R-1)}{A(\theta^{*},B)-q} + h_{n}(q^{*}(\theta^{*})-q).$$

 \bullet Let $q_n(B,\theta)$ and $B_n(\theta)$ be implicitly defined by

$$\bar{\eta}_{n} (B, q) = q \frac{(K-1)}{A(\theta, B) - q}.$$
$$B_{n} (\theta) = \arg \max_{B} \bar{\eta}_{n} (B, q(B, \theta)) \int \max\{\pi(\theta, \varepsilon) - B\} dF(\varepsilon)$$

(D

Approximate efficient allocation

- Consider a sequence of $\{\bar{\eta}_n\}$ indexed by parameter $h_n>0$
- \bullet For any θ^* and corresponding $B=B^*(\theta^*)$ let

$$\bar{\eta}_{n}(B,q) \equiv q \frac{(R-1)}{A(\theta^{*},B)-q} + h_{n}(q^{*}(\theta^{*})-q).$$

• Let $q_n(B,\theta)$ and $B_n(\theta)$ be implicitly defined by

$$\bar{\eta}_{n}(B,q) = q \frac{(R-1)}{A(\theta,B) - q}$$

 $B_{n}(\theta) = \arg \max_{B} \bar{\eta}_{n}(B, q(B, \theta)) \int \max\{\pi(\theta, \varepsilon) - B\} dF(\varepsilon)$

- If $h_n > 0$, continuation eq is unique for all (B, θ)
- As $h_n \to 0$ then converge to efficient allocation

- Unique continuation equilibrium for all θ . Let θ^* s.t. $B = B^*(\theta^*)$
- If $\theta \geqslant \theta^* \geqslant RK$ then invest for sure
- If $\theta < \theta^*$ then invest with probability in (0, 1)

- As h_n decreases:
- If $\theta \geqslant \theta^* \geqslant RK$ then invest for sure
- If $\theta < \theta^*$ invest with smaller probability

 $\bullet \ {\rm As} \ h_n \to 0$

- Investment probability converges to step function
- $\circ~$ Thus, debt levels converge to $B^*(\theta)$ if $\theta \geqslant RK$
- $\circ~{\rm For}~\theta < RK$ try to issue debt but inefficient investment arb. small

Best robust outcome

Commitment to ex-post inefficient investment

- Gov't commit to fund bad projects (even if with small pr)
 - $\circ~$ Allows to learn which projects are good
 - Provide enough support for good project so investors coordinate on good outcome
- Commitment technology is necessary
 - $\circ~$ On path, gov't knows that projects requesting assistance are bad
 - Want to renege ex-post
- Absent commitment, either
 - No intervention or
 - Gov't directly funds all projects (without collecting any info)
- Cannot rely on reputational forces (Barthelemy-Mengus)
- Opposite result than typical bailout
 - $\circ~$ Want to commit to not bailing out

Dynamic version

- Multiplicity only if new external funds needed to fund investment
- Optimal private contract delays investors' payments to minimize need to raise new external funds
- Best robust policy approximates efficient all'n as in static case
- Bail-in: Interventions in t ≥ 1 do not provide transfers to t-1 investors; such transfers would
 - $\circ~{\rm Reduce}$ information content of debt prices in t-1
 - $\circ~$ Subsidize investment in the bad project in t-1

Moral hazard

- Moral hazard often associated with interventions/bailouts
 Kareken-Wallace
- How intervention affects managers' incentives to generate investment projects?
- Higher effort than worst case but lower than best case

Higher effort than worst case but lower than best case

- $\bullet\,$ Manager takes costly action a that affects the value for θ
 - $\circ \ \theta \in \{\theta_L, \theta_H\} \ {\rm with \ and} \ \theta_L < RK < \theta_H$
 - Let $f(\theta|a) \equiv Pr(\theta|a)$ and c(a) is effort cost
- Without any intervention, equilibrium a is $[0,\,a^*]$
 - $\circ \ \, \mathrm{Efficient \ effort \ is} \ \, a^{*} = \text{arg} \, \text{max}_{a} \, f\left(\theta_{H}|a\right)\left(\theta_{H}-RK\right) c\left(a\right)$
 - Effort can be lower because good equilibrium can be selected with probability $\zeta < 1$,

$$\max_{a} f(\theta_{H}|a) \zeta(\theta_{H} - RK) - c(a)$$

• Under optimal robust policy

 $a_{n} = \text{arg}\max_{a} f\left(\theta_{H}|a\right) \eta_{n}(\theta_{H})\left(\theta_{H} - RK\right) - c\left(a\right) + f(\theta_{L}|a)\eta_{n}(\theta_{L})\nu(\theta_{L})$

Thus, $0 < a_n < a^*$ and $\{a_n\} \uparrow a^*$

Higher effort than worst case but lower than best case

- Intervention ensures good projects are funded
- This increases rewards for manager's effort relative private equilibria where good projects not implemented for sure
- But also subsidize bad projects
- This reduces incentives so lower effort than efficient equilibrium
- $\bullet\,$ In the limit, as funding of bad projects vanish only positive effect, $\{a_n\}\uparrow a^*$

Can general mechanism improve market mechanism?

- No, if investors observe θ with noise (and market aggregate info)
 - $\circ~$ No mechanism uniquely implements the efficient allocation
 - $\circ~$ Cannot make dominant strategy for manager with $\theta < RK$ to report something that induces no investment
 - By investing get option value $\int max\{\pi(\theta,\varepsilon)-B,0\}dF(\varepsilon)>0$
 - $\circ~$ For investors, same coordination problem as in debt market
- Yes, if investors observe θ exactly
 - $\circ~$ Can uniquely implement the efficient allocation
 - $\circ~$ Make one investor pivotal and give them a return $\theta-RK$

Conclusion

- Study investment problem where static coordination problem leads to multiple equilibria
- Study which gov't intervention can uniquely implement desired outcome when gov't lacks info
 - Best robust policy
- Governments must commit to fund inefficient investment to guarantee that good investment are undertaken for sure
- Complementarity between government and market
 - Market aggregates information
 - Government (big player) rules out coordination problems