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Abstract

This paper studies the optimal design of rules in a dynamic model when there is

a time inconsistency problem and uncertainty about whether the policy maker can

commit to follow the rule ex post. The policy maker can either be a commitment type,

which can always commit to follow rules, or an optimizing type, which sequentially

decides whether to follow rules or not. This type is unobservable to private agents,

who learn about it through the actions of the policy maker. Higher beliefs that the

policy maker is the commitment type (i.e., the policy maker’s reputation) help pro-

mote good behavior by private agents. We show that in a large class of economies,

preserving uncertainty about the policy maker’s type is preferable from an ex-ante

perspective. If the initial reputation is not too high, the optimal rule is the strictest

one that is incentive compatible for the optimizing type. We show that reputational

considerations imply that the optimal rule is more lenient than the one that would arise

in a static environment. Moreover, opaque rules are preferable to transparent ones if

reputation is high enough.
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1 Introduction

Since Kydland and Prescott (1977), a large literature in macroeconomics has grappled
with the problem of designing policies when there are time inconsistency problems. Rules
are often proposed as a solution to the time inconsistency problem. The implicit assump-
tion is that society can credibly impose rules on policy makers and that policy makers
can commit to follow these rules. However, at the time when rules and regulations are
formulated, there is often substantial uncertainty about whether policy makers can resist
the temptation to deviate ex post from the stated rules if it is optimal for them to do so.
This uncertainty is only resolved over time as the actions of policy makers are observed.
The combination of uncertainty and learning generates reputational incentives for policy
makers.

The key question motivating this paper is, how should rules be designed taking into
account both the uncertainty about the policy makers’ ability to follow the rules ex post
and their reputation-building incentives? To answer it we study the optimal design of
policy rules in a dynamic game between policy makers and private agents in which the
policy maker’s ability to commit is private information. We define the public beliefs about
the ability of the policy maker to commit as the policy maker’s reputation. The main re-
sult of our paper is that if the initial reputation is low enough, the optimal rule should be
designed to preserve uncertainty in future periods. This is implemented by introducing
leniency in policy. In contrast, if the initial reputation is high, the optimal rule should
promote learning about this type. We also show that designing opaque rules can be ben-
eficial when reputation is high since they help preserve uncertainty without the need to
introduce leniency in rules.

The insights from our theory can be applied to many relevant policy design questions
including the design of central bank mandates, fiscal rules in federal governments, and
financial regulation. Consider, for instance, the optimal design of financial regulation. As
is well understood, in a large class of economies, if regulators can commit, a no-bailout
policy is optimal in order to prevent excessive risk taking by financial institutions ex ante.
In particular, creditors should be forced to take losses in the event of default (bail-in). If
the reputation of regulators is not sufficiently high, our analysis suggests that allowing
for partial bailouts in equilibrium is optimal. We show that, contrary to conventional
wisdom, bailouts along the equilibrium path are necessary to discipline future risk-taking
of financial firms, as they preserve uncertainty about the type of the policy maker.

We consider a dynamic model with three types of agents: a rule designer, policy mak-
ers, and private agents. The rule designer chooses a rule, which consists of a policy recom-
mendation to policy makers, in order to maximize the expected social welfare. After the
rule is chosen, the private agents take their actions and, finally, the policy maker chooses
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a policy. As in Barro (1986), the policy maker can be one of two types: a commitment
type, which always follows the recommendation, or an optimizing type, which follows
the recommendation only if it is sequentially optimal to do so. This type is unobservable
to both the rule designer and private agents. We define the beliefs that the policy maker
is the commitment type as its reputation.

We present two leading examples of our framework. The first is a model similar to
Barro and Gordon (1983b) in which the rule designer must choose the optimal inflation
target. The second is a banking model in the spirit of Kareken and Wallace (1978) where
there is a trade-off between providing incentives to bankers for taking appropriate levels
of risk ex ante and bailing them out ex post to avoid a costly default. In this case the rule
designer chooses an optimal bailout policy.

We first study a static problem. We show that under certain conditions, uncertainty is
beneficial in that the expected social welfare is higher when the private agents and the rule
designer are uncertain about the type of the policy maker relative to the case in which this
type is revealed right before the rule designer chooses the rule. That is, the rule designer’s
static value is concave in the policy maker’s reputation.1 There are two critical conditions
that generate this result. First, society’s preferences are concave, or, equivalently, there
are convex costs of deviating from the Ramsey outcome. Second, the equilibrium private
action and the policy maker’s static best response are strategic complements and this
complementarity is stronger when reputation is low. In the context of the bailout example,
this second condition implies that an increase in reputation incentivizes banks to take
on less risk, and that the disciplining effect of reputation is greater when reputation is
low and banks are taking on a lot of risk. Together, these two conditions along with a
technical condition, imply that there are decreasing returns to reputation and that the
rule designer’s value is concave in reputation.

We then consider a repeated version of this policy game. We assume that at the begin-
ning of each period the rule designer can revise the rules without commitment.2 Unlike
in the static model, the optimizing type now cares about its reputation in the following
period as it affects the actions of the private agents. Thus, it can be incentivized to choose
policies other than its static best response. We show that when reputation is low, the rule
designer wants to preserve uncertainty about the type of the policy maker. The optimal
rule in this case is the most stringent policy that is incentive compatible for the optimizing
type. This recommended policy is more lenient than the statically optimal one. Leniency

1Nosal and Ordoñez (2016) also consider an environment in which uncertainty can mitigate the time
inconsistency problem. The mechanism is very different: here there is uncertainty about the policy maker’s
type, while in their paper there is uncertainty about the state of the economy, which restrains the policy
maker ex post.

2In Appendix E, we show that our main results are unchanged if the rule designer can commit, for
sufficiently high or low levels of reputation.
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in the rule makes it easier for the optimizing type to follow the recommendation ex post.
This has dynamic benefits because it prevents the private agents from learning the type
of the policy maker, and uncertainty is beneficial. When reputation is low, inducing the
optimizing type to follow the rule also has static benefits. This is because it promotes
better behavior by the private agents who anticipate that the optimizing type will follow
the rule – albeit more lenient – instead of the statically optimal policy.

This result has sharp implications for policy design. In the context of optimal inflation
targeting, having looser inflation targets is beneficial when reputation is low. Another
application of our framework is the design of exchange rate regimes. Our result suggests
that when reputation is low, crawling pegs might be superior to fixed-exchange-rate poli-
cies. Similarly, in the context of financial regulation, if reputation is low, the optimal rule
is not a strict no-bailout policy that imposes losses on lenders. By explicitly allowing for
partial bailouts along the equilibrium path, the rule designer makes it easier for the opti-
mizing type to adhere to the rule and maintain its reputation. The optimal rule prescribed
by the model is in contrast with the observed design of financial regulation after the 2008
financial crisis. After the bailouts of financial institutions during this crisis, the reputation
of regulators was arguably low. While our model prescribes a more lenient bailout policy
in this situation, the Dodd–Frank Act imposed strict no-bailout policies.

In contrast, if reputation is sufficiently high, the rule designer finds it optimal to set
stringent rules that result in the type of the policy maker being revealed. This is because
when reputation is sufficiently high, there are static costs associated with choosing a le-
nient rule. In this case, the private agents anticipate that the rule will be followed with
sufficiently high probability and so by choosing the Ramsey policy, the rule designer can
obtain a value close to the Ramsey outcome. There are, however, dynamic losses asso-
ciated with choosing the Ramsey policy: if the rule is to follow the Ramsey policy, for a
low enough discount factor, the optimizing type will not follow the rule and there will be
revelation about the type of the policy maker in the first period. Because uncertainty is
beneficial, the expected continuation value is lower than in the case in which the type of
the policy maker is not revealed. When reputation is high enough, the static benefits of
choosing a stringent rule outweigh the dynamic losses.

Next, we study the optimal degree of transparency of the rule. We say that a rule
is transparent if the policy maker’s deviations are easily detectable. In repeated policy
games with no reputational considerations, perfect monitoring is always desirable. See
Atkeson and Kehoe (2001), Atkeson et al. (2007), and Piguillem and Schneider (2013).
In contrast, we show that with reputational considerations, transparent rules are desir-
able only for low levels of reputation, while opaque rules are desirable for high levels of
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reputation.3 This is because they can help maintain reputation without the static costs
associated with pooling when reputation is high.

We consider two ways in which the rule designer can affect the transparency of the
rules. First, we assume that future private agents and rule designers observe only a signal
of the chosen policy and the rule designer can choose the precision of the signal. High
precision (transparency) is beneficial because it incentivizes the optimizing type to follow
the rule, as a deviation results in the revelation of its type with large reputation losses.
Low precision (opaqueness) is beneficial because it allows the rule designer to maintain
uncertainty about the policy maker’s type. For instance, if the signals are imprecise, the
private agents attribute the observed deviations from the stated policy to noise rather
than to the policy maker being the optimizing type that deviated from the policy. This
is helpful for high levels of reputation since the rule designer would like to choose the
Ramsey policy from a static perspective. As discussed earlier, there is a trade-off between
the static value of having the commitment type follow a stringent rule and the dynamic
losses associated with learning the policy maker’s type. Allowing for opaque rules helps
break this trade-off: the rule designer can achieve the high static payoff of choosing a rule
equal to the Ramsey policy without the costs associated with separation for sure because
the policy observations are very noisy.

An alternative way of introducing opacity in rules is to allow the rule designer to
choose stochastic rules even though fundamentals are deterministic. When reputation is
low, the optimal rule has no randomization in order to maximize the incentives of the
optimizing type to follow more stringent policies. When reputation is high instead, it is
optimal to have randomization in order to reduce the dispersion in the posteriors.

In our baseline setup, we model the commitment type as a policy maker that cannot
deviate from the rules. One interpretation of this is that the commitment type suffers a
cost from deviating from the stated rule over and above the reputational cost in the model.
For example, a deviation may affect the commitment’s type ability to be elected to higher
offices, while the optimizing type may not have such ambitions. Alternatively, one could
assume that the policy makers are identical, but there is uncertainty about whether these
policy deviations can be enacted, due to legislative holdups, for example. In particular,
policy makers always have an incentive to choose policies which are sequentially ratio-
nal but might face roadblocks in their implementation if the legislature is controlled by
opponents who might block these policies for purely political purposes. As in Piguillem
and Riboni (2018), the rule can be the default option in case of such disagreements. In
this case, we can interpret the commitment type as a policy maker which faces such road-
blocks, and the optimizing type as one which does not. The latter might want to pretend

3In the principal–agent literature there are examples of environments where imperfect monitoring is
beneficial to provide incentives. See, for instance, Crémer (1995) and Prat (2005).
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that its hands are tied (like the commitment type) for exactly the same reasons as in the
baseline model.

Related literature The macroeconomics literature has followed two approaches to mod-
eling time inconsistency in policy games. First, in the tradition of Kydland and Prescott
(1977), there are models in which the policy maker is benevolent and time-inconsistency
problems arise because of externalities associated with the presence of private agents (see
Chari et al. (1988)). Examples include Barro and Gordon (1983b), Chari and Kehoe (1990),
Athey et al. (2005), and Kareken and Wallace (1978). Our setup follows in this tradition.
Second, the literature also considers economies in which the time-inconsistency problem
arises from a conflict of interest between the society and the policy makers. In these
economies private agents do not play a critical role. Examples include Amador et al.
(2006), Amador and Bagwell (2013), and Halac and Yared (2014). The rule designer’s de-
sire to influence the actions of the private agents is critical for our results. We show that
in models that follow the second approach and do not have private agents, uncertainty is
never beneficial in that the rule designer always prefers to learn the policy maker’s type.

This paper is related to the literature that studies the trade-off between rules and flex-
ibility. See, for example, Athey et al. (2005), Halac and Yared (2014), Halac and Yared
(2018a), and Azzimonti et al. (2016), among others. The focus of this literature is on how
much flexibility to leave the policy maker when it is not possible to make the rule con-
tingent on the state of the economy (say because it is private information to the policy
maker). We abstract from this issue by considering a deterministic environment, but we
focus instead on the uncertainty about the ability of the policy maker to commit. Our
paper is also related to the literature that studies optimal policies without commitment
when it is known that the policy maker cannot commit. This is the approach followed by
a large literature on time-consistent policies, including Barro and Gordon (1983b), Chari
and Kehoe (1990), Phelan and Stacchetti (2001), and Halac and Yared (2018b). Our paper
nests simple versions of these two approaches as special cases when the policy maker’s
reputation is either one or zero.

This paper builds on the reputation literature that originates with Milgrom and Roberts
(1982) and Kreps and Wilson (1982). See Barro (1986), Backus and Driffill (1985), Phelan
(2006), Amador and Phelan (2018), and Dovis and Kirpalani (2020b) for recent applica-
tions to policy games. Most of this literature takes as given the policy chosen by the
commitment type and analyses the incentives of the optimizing type and the outcomes
that can be achieved. The goal of this paper is to study the optimal policy that the com-
mitment type should follow.

A key driver of our results is the idea that uncertainty about the policy makers’ type
is beneficial. This feature is also present in Dovis and Kirpalani (2020a). Our contribu-
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tion is to show how this property affects the design of the optimal rule. Marinovic and
Szydlowski (2019), Bond and Zeng (2018), and Asriyan et al. (2019) also consider envi-
ronments in which uncertainty is beneficial and it is not optimal to resolve uncertainty.
In these models, the focus is on whether the agent having the information should dis-
close it to the other agent(s) in the economy. In contrast, the rule designer in our model
does not know the policy maker’s type and we focus on the design of policies that can
induce – or not – revelation. Dovis and Kirpalani (2020a) show that if the rules are cho-
sen by the policy maker, for intermediate levels of discount factors, the commitment type
chooses a stringent rule to separate from the optimizing type for all levels of reputation,
while the rule designer under the veil of uncertainty chooses to avoid separation when
the reputation of the policy maker is sufficiently low.4

Our paper is also related to a literature that studies signaling games when policy mak-
ers have different types. See, for instance, Vickers (1986), Cole et al. (1995), Angeletos et al.
(2006), King et al. (2008), Lu (2013), and Lu et al. (2016) with payoff types, or Dovis and
Kirpalani (2020a), where one type has the ability to commit to the announced policy. See
also Sanktjohanser (2018) for a similar analysis in the context of a bargaining game. Our
approach differs from these papers since we study the best policy chosen by the rule de-
signer when there is uncertainty about the type of the policy maker. As argued above,
these two approaches lead to different outcomes.

Debortoli and Nunes (2010) consider a policy game in which the policy maker has
the ability to change its policies infrequently and randomly; however, they abstract from
reputation-building incentives.

2 Policy game

We consider a policy game that captures a variety of relevant economic environments
as special cases. We present two leading examples of our framework: a version of the
Barro and Gordon (1983a) model of monetary policy and a banking model in the spirit
of Kareken and Wallace (1978). Our framework also nests other models, including the
Fisher model of capital income taxation considered in Chari and Kehoe (1990).

There are three types of agents: the rule designer, policy makers (or bureaucrats), and
a continuum of private agents. We consider a repeated environment where there are no
physical state variables across periods. At the beginning of each period, the rule designer
recommends a policy πr from a set [π,π]. We refer to this recommendation as a rule.
We say that a rule π is more stringent (resp., lenient) than a rule π ′ if π < π ′ (resp.,

4In Appendix F.1, we show that the signaling game result in Dovis and Kirpalani (2020a) holds in this
model as well.

7



π > π ′). The private agents then choose an individual action. After observing the private
action, the policy maker chooses a policy π. The policy maker can be one of two types: a
commitment type, which always follows the recommendation made by the rule designer,
or an optimizing type, which can choose any policy π in the set [π,π].5 We assume that
the policy maker’s type is permanent.6 The policy maker’s type is unobservable to the
private agents and the rule designer, who learn about it through the observed policies.
We assume that the private agents and the rule designer share a common prior ρ that
they are facing the commitment type. We define the probability that the private agents
and the rule designer ascribe to the policy maker being the commitment type as the policy
maker’s reputation.

We let x denote the representative (average) action taken by the private agents. We as-
sume that the private action is a function φ of the expected policy, Eπ = ρπc + (1 − ρ)πo,
where πc = πr is the policy chosen by the commitment type and πo is the policy chosen
by the optimizing type,

x = φ (Eπ) . (1)

We will refer to (1) as the implementability constraint. We think of the function φ as sum-
marizing the set of implementability conditions describing the set of outcomes that can
be implemented given a set of policies or an incentive compatibility constraint.

The rule designer and the policy makers maximize a social welfare function w (x,π)
and discount future payoffs with discount factors β and βo, respectively. We allow for
the rule designer’s discount factor β to differ from βo, although this is not critical. We
assume that the problem is time inconsistent. Specifically, we define the Ramsey outcome
as

(xramsey,πramsey) = arg max
x,π

w (x,π) subject to x = φ (π) .

We assume that there is a time inconsistency problem in that the Ramsey policy is not
optimal ex post, i.e., πramsey 6= π∗ (xramsey), where π∗ (x) denotes the best response of the
government to x, π∗ (x) = arg maxπw (x,π). We assume without loss of generality that
π∗ (xramsey) > πramsey.

We also make the following assumptions about w and φ:

Assumption 1. Assume that

1. If wx > 0, then φ ′ 6 0, and wxπ < 0.
5An alternative interpretation is that the type of the policy maker determines the utility cost associated

with deviating from the rule designer’s recommendation. In particular, we assume that this cost is suf-
ficiently large for the commitment type so that it always follows the recommendation, and zero for the
optimizing type.

6This assumption is made for convenience. Our main results extend to the case in which the policy
maker’s type can change exogenously, provided that this type process is persistent. When types are i.i.d.,
there is no role for reputation.
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2. If wx < 0, then φ ′ > 0, and wxπ > 0.

As is standard in the time inconsistency literature, we consider environments in which
the inability of the policy maker to commit ex post incentivizes the private agents to take
worse actions ex ante. Thus, if social welfare is increasing in the private action x, we as-
sume that if the agents expect higher π, they choose lower values of x (φ ′ 6 0). Finally, we
assume a form of supermodularity in (x,π) which implies that the government’s incen-
tive to deviate from its ex-ante promises is higher the worse the private action is. In this
sense, the private agents’ action and the government’s static best response are strategic
complements.

We next present two economies and show how they map into our general framework.

Example 1: Barro–Gordon One special case of the general environment is the classic
Barro and Gordon (1983a) model used to analyze the time-inconsistency problem in mon-
etary policy. In this context, we interpret x as the average wage inflation, and π is the
money growth rate (or price inflation).

We assume that the private agents set wage inflation according to

x = φ (Eπ) = ρπc + (1 − ρ)πo.

The social welfare function takes the quadratic form

w (x,π) = −
1
2

[
(ψ+ x− π)2 + π2

]
,

with ψ > 0. The first term in this functional form represents the welfare losses associated
with low employment, due, for example, to monopolistic competition in labor markets.
The parameter ψ measures the extent of this distortion, and it can be mapped into the
wage markup set by unions. The second term captures the costs of ex-post inflation, due,
for example, to the transactional value of real money balances.

This example captures the problem of designing of the mandate for a central bank. In
this context, the rule designer corresponds to congress, while the policy makers are the
central bankers who choose the actual policies.

Example 2: Bailout and effort We now consider another economy inspired by the clas-
sic analysis in Kareken and Wallace (1978), which studies the trade-off between the ex-
post benefits and the ex-ante costs of bailouts. Bailouts are not desirable ex ante because
they induce agents to exert inefficiently low effort and in turn reduce expected output;
bailouts are ex-post desirable because they avoid bankruptcy costs (net of financing costs).
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There are two types of private agents: depositors and bankers. At the beginning of
each period, the banker must borrow one unit from the depositors to finance an invest-
ment opportunity that pays off at the end of the period. The return on the investment
opportunity is RH with probability p (e), where e is the effort exerted by the banker, and
0 with probability 1 − p (e). The function p (e) is increasing and concave, and it satisfies
the Inada conditions. Exerting effort e results in a utility cost v (e), where v is increasing
and convex. We interpret the banker’s effort as the costs associated with monitoring the
investment project. The bankers and the depositors are risk-neutral and do not discount
consumption between the beginning and the end of the period.

The banker offers the depositors a contract that promises to repay R units of the con-
sumption good in the second sub-period subject to limited liability. We assume that so-
ciety faces bankruptcy costs ψ whenever the lenders recover less than their initial invest-
ment.7 The policy maker can avoid these bankruptcy costs by making a transfer to the
banker so that the depositors can be repaid. In particular, the government can choose the
recovery π in case the banker is unable to repay. There is a taxation cost associated with
these transfers, denoted by c (π) , where c is increasing and convex.

We assume that the depositors can observe the effort e. The interest rate schedule,
R (e), faced by a banker is determined by the depositors’ break-even condition, which
requires that the expected return from lending equal 1,

p (e)R (e) + (1 − p (e)) [ρπc + (1 − ρ)πo] = 1. (2)

Note that for a given effort level, higher expected bailouts in case of default, Eπ = ρπc +

(1 − ρ)πo, result in a lower interest rate because depositors require a lower payment in
the no-default state given the larger expected payment in the default state. The banker
chooses the effort to maximize −v (e)+p (e) [RH − R (e)], where the interest rate schedule,
R (e), is implicitly defined by (2). Using (2) to substitute for R (e), we can rewrite the
banker’s problem as

max
e

−v (e) + p (e)RH + (1 − p (e))Eπ,

where the term (1 − p (e))Eπ represents the distortion induced by the expected bailout.
Thus the optimal effort e is a function φ (Eπ) that is implicitly defined by the banker’s
first-order condition

v ′ (e) = p ′ (e) [RH − Eπ] .

The social welfare function is the equally weighted sum of the utility of the bankers and

7Alternatively, we could have assumed that these costs are incurred whenever the lenders recover less
than the promised return.
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depositors net of taxation (c (π)) and bankruptcy costs (ψ (1 − π)):

w (e,π) = −v (e) + p (e)RH − 1 − (1 − p (e)) (1 − π)ψ− c (π) .

To simplify calculations we assume that p (e) = eα, v (e) = e2/2, and c (π) = λπ2/2.
This example captures the problem of designing optimal financial regulation to be

implemented by a regulatory authority. A recent example is the Single Resolution Mech-
anism in the European Union. The Parliament and the Council of the European Union
approved the regulation that is then implemented by the Single Resolution Board (SRB).
Thus, the Parliament and the Council correspond to the rule designer, and the SRB to the
policy maker in our model.

3 Statically optimal rules

We now consider the problem of how to design the optimal rule in a static environ-
ment. We establish a set of sufficient conditions under which uncertainty about the policy
maker’s type is beneficial in the static economy.

Setup The rule designer anticipates that if the policy maker is the commitment type, it
will follow the rule πr. Instead, if the policy maker is the optimizing type, it will always
choose the static best response to the private action x. This is because in a static model the
rule designer has no tools to incentivize the optimizing type to take any other action. Of
course, this will change in the dynamic setting.

To characterize the equilibrium, we write the rule designer’s problem as if it directly
chooses the equilibrium outcomes subject to the appropriate incentive compatibility con-
straints. In particular, the rule designer solves

W0 (ρ) = max
πc,πo,x

ρw (x,πc) + (1 − ρ)w (x,πo) , (3)

subject to the implementability constraint,

x = φ (ρπc + (1 − ρ)πo) , (4)

and the optimizing type’s incentive constraint,

πo = π
∗ (x) .

For later reference, we denote the solution to this problem as πc,0 (ρ), πo,0 (ρ) = π
∗ (x0 (ρ)),
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and x0 (ρ).8 We also define the value for the optimizing type:

V0 (ρ) = w (x0 (ρ) ,πo,0 (ρ)) .

Uncertainty is beneficial We next discuss the conditions under which uncertainty is ben-
eficial in that

W0 (ρ) > ρW0 (1) + (1 − ρ)W0 (0) . (5)

When uncertainty is beneficial, the expected social welfare is higher when the policy
maker’s type is uncertain relative to the case in which types are revealed right before
the rule designer chooses the rule. This property of the static problem turns out to be
critical for the form of the optimal rule in a dynamic model.

We now provide a set of sufficient conditions on primitives that ensure that uncer-
tainty is beneficial. In the appendix we show that the Barro–Gordon and bailout examples
satisfy these assumptions.

Assumption 2. Assume:

1. Concave preferences: w (x,π) is concave in (x,π).

2. Strategic complementarities decreasing in reputation: wπ (x,π) is convex in (x,π) and if
wx > 0 then φ ′′ 6 0 or if wx 6 0 then φ ′′ > 0.

3. wπ (x,π) + [ρwx (x,π) + (1 − ρ)wx (x,π∗ (x))] φ ′(·)
[1−φ ′(·)(1−ρ)π∗x(x)] 6 0 for all π.

4. 1 > π∗x (x)φ ′ (π) > 1 −
wx(x,π∗(x))
wx(x,π) , where x = φ (π), x = φ (π), and π∗x (x) =

−
wxπ(x,π∗(x))
wππ(x,π∗(x)) .

We have the following result:

Proposition 1. Under Assumptions 1 and 2, πc,0 (ρ) = π and uncertainty is beneficial in that
(5) holds.

The proof of this, and of all other propositions, is provided in the appendix. Con-
dition 3 in Assumption 2 implies that the optimal static rule takes a simple form: for
all ρ, the rule is set to πc (ρ) = π, which is also the Ramsey policy.9 This is true even
though the private action is not at the Ramsey level since the private agents anticipate
that with probability 1− ρ the policy maker is the optimizing type, who will deviate from

8Note that here we are allowing the rule designer to choose the best equilibrium given a rule πr. Thus
there is no need to have the rule depend on the representative private action x.

9Clearly, for ρ = 0 the optimal rule is a correspondence with values [π, π̄] because the right side of (3) is
independent of πc.
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the recommendation and choose the static best response. This is because the expression
in Condition 3 is the first-order condition for the problem in (3). The condition implies
that reducing π has a positive marginal effect and thus it is optimal to be at the corner
π. Therefore, it is optimal for the rule designer to recommend the most stringent policy.
Intuitively, the rule designer is trading off the cost of not best responding to the private
action (the first term in Condition 3) with the benefit of inducing private agents to take a
more favorable action (the second term in Condition 3). Under Condition 3, the benefit
outweighs the cost for all levels of the private action, even those away from the Ramsey
outcome. Thus, it is optimal to choose the most stringent policy. In the context of the
Barro–Gordon example, this means that the optimal inflation target is zero, while in the
bailout example, a strict no-bailout policy is optimal. Restricting to environments where
Condition 3 holds simplifies the analysis without changing the economics.

The critical role of the Proposition is to identify the sufficient conditions such that con-
dition (5) holds. Here we sketch the logic of our proof for the case in which wx > 0 , as
in the bailout model. A specular logic holds for the case in which wx < 0. To establish
that uncertainty is beneficial it is sufficient to show that W0 (ρ) is concave, or, equiva-
lently, that there are decreasing returns to reputation. First, we prove that w (x0 (ρ) ,π)
andw (x0 (ρ) ,π∗ (x0 (ρ))) are concave in ρ. To this end, note that since φ is concave (Con-
dition 2 of Assumption 2) and π∗ is decreasing and convex (which follows from Condi-
tion 2 of Assumption 2), then x0 (ρ) = φ (ρπ+ (1 − ρ)π∗ (x0 (ρ))) is concave in ρ. These
observations together with the concavity of w and wx > 0 imply that w (x0 (ρ) ,π) and
w (x0 (ρ) ,π∗ (x0 (ρ))) are concave in ρ. Having established the concavity of w (x0 (ρ) ,π)
and w (x0 (ρ) ,π∗ (x0 (ρ))) is not enough to show that

W0 (ρ) = ρw (x0 (ρ) ,π) + (1 − ρ)w (x0 (ρ) ,π∗ (x0 (ρ)))

is concave since the product of two concave functions is not necessarily concave. How-
ever, the technical assumption in Condition 4 guarantees thatW0 (ρ) is concave.

There are two key economic conditions that deliver the concavity of W0 (ρ). First, the
rule designer’s preferences are concave; this is Condition 1 in Assumption 2. This con-
dition implies that the costs of deviating from the Ramsey outcome are convex. Second,
the private action x and the policy πo are strategic complements – in that φ is decreasing
in πo and π∗ is decreasing in x – and this complementarity is stronger when the private
action x is far from the Ramsey outcome (low level of reputation); this is Condition 2 in
Assumption 2. This condition is illustrated in Figure 1. The first panel shows that the
change in the private action to a decrease in πo is larger when the expected policy is high
(far from Ramsey policy), i.e., φ is concave. The second panel shows that the change in
the policy maker’s best response to an increase in the private action is large (in absolute
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Figure 1: Static value and private action when wx > 0
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value) when the action is low (far from the Ramsey outcome), i.e., π∗ is convex. This im-
plies that an increase in reputation has a larger effect on the average private action when
reputation is low (x0 is concave), as shown in the third panel of Figure 1.

These two conditions are critical to ensuring that there are decreasing returns to rep-
utation. Note, however, that the two conditions are neither sufficient nor necessary, al-
though at least one of them must hold.

Discussion of key assumptions We now discuss the properties of the underlying eco-
nomic environments in which the aforementioned conditions – concave preferences and
stronger complementarities when reputation is low – are likely to be met. Clearly, the
majority of applications assume concave preferences. For instance, in monetary models,
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the cost of inflation is assumed to be convex, as in the Barro–Gordon example.
Consider now the strategic complementarities condition. For the best response of the

optimizing type to be (weakly) convex, it must be that wπ is convex. Intuitively, the time
inconsistency problem is exacerbated when the private action x is farther away from the
Ramsey outcome.

Next, consider the concavity of φ. So far, we have taken φ to be a primitive object in
our policy game. To discuss the underlying properties that give a concave φ, note that
in general we can think of φ as arising from the following maximization problem by an
individual private agent i:

max
xi
u (xi, x,π)

that takes as given the average action x and the policy π (which is a function of the average
action x) for some indirect utility function u. Assuming concavity of u in xi, optimality
requires that u1 (xi, x,π) = 0. By imposing representativeness we can then derive φ (π) as
the solution to

u1 (φ (π) ,φ (π) ,π) = 0. (6)

Recall that this was exactly how we derived φ for the bailout example.
For φ to be concave, it must be that the incentives to choose an action far away from

the Ramsey action are higher if private agents expect the policy to be far away from the
Ramsey policy. If the average action does not directly affect the agent’s utility in that
u (xi, x,π) = u (xi,π), as is the case in our two examples, this is true if u1 is jointly concave
in (xi,π). When the indirect utility u also depends on x – say because of the presence of a
price that in equilibrium depends on x – then one must also consider the complementarity
between xi and x. For instance, if xi and x are substitutable – u13 < 0 – and this effect is
stronger the higher is x, then φmay be convex in ρ and it does not satisfy our conditions.

In Appendix B, we provide an example where this is the case based on a simple invest-
ment model in which the government can expropriate the investment made by foreign
investors ex post but ex ante has incentives to promise no taxes to stimulate investment.
In the example, the foreign investment, x (π), is increasing and convex in expected taxes
π. When (expected) taxes are high, a reduction in taxes results in a smaller increase in
investment than when taxes are low. That is, there are increasing returns to reputation.
This is because the equilibrium marginal product of capital is more sensitive when taxes
are high and thus the effect of the tax reduction on investment is mitigated by the steep
reduction in the marginal product of capital. Thus, the complementarity between taxes
and investment is lower when taxes are high (far away from the Ramsey policy). This in
turn implies that W0 (ρ) is convex if the government’s preferences for consumption are
close to linear.
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4 Dynamically optimal rules

We next study how the optimal rule changes once we introduce dynamics. Our main
result is that when reputation is low, the rule designer chooses a rule which preserves
uncertainty about the type of the policy maker. The optimal rule is the most stringent
policy that is incentive compatible for the optimizing type. This recommended policy is
more lenient than the statically optimal one. Leniency in the rule makes it easier for the
optimizing type to follow the recommendation ex post. In contrast, if reputation is suffi-
ciently high, the rule designer finds it optimal to set stringent rules that result in the type
of the policy maker being revealed. This is because when reputation is sufficiently high,
the static costs associated with choosing a lenient rule outweigh the benefits associated
with preserving uncertainty about the policy maker’s type.

We assume that the rule designer can choose the optimal rule in each period without
commitment. In Appendix E, we show that in the twice repeated economy, the solutions
with and without commitment on the part of the rule designer coincide. With more than
two periods, whether these two values coincide depends on the level of reputation. We
show that for reputation values that are either sufficiently high or sufficiently low, the
commitment and no-commitment outcomes coincide. Thus, for reputation values in these
ranges, our main results are unchanged if the rule designer has commitment.10

4.1 Two-period problem

We now study the optimal rule design problem in a two-period economy by repeating the
stage game studied in the previous section twice. When there is more than one period, the
optimizing type can be incentivized to take a different action from its static best response.
We can set up the rule designer’s problem as choosing the rule that will be followed by
the commitment type, πr = πc, and a recommendation to the optimizing type, πo. This
recommendation must be incentive compatible in that the optimizing type must prefer to
follow the recommendation than to choose its best possible deviation (playing the static
best response π∗ (x)) and attaining a continuation value V0 (0) as the prior jumps to zero:

w (x,πo) +βoV0
(
ρ ′ (πo|πc,σ)

)
> w (x,π∗ (x)) +βoV0 (0) , (7)

where recall βo is the discount factor for the optimizing type and ρ ′ (πo|πc,σ) is the pri-
vate agents’ belief about the policy maker’s type after observing πo given recommenda-

10However, for an intermediate range of reputation values, the solution to the problem with commitment
differs from the solution in the case in which rules are chosen sequentially: the rule designer itself suffers
from a time inconsistency problem. This is because future rules can be used to incentivize the policy maker
in the current period, thereby relaxing the incentive compatibility constraint.
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tion πc and the indicator variable σ, which takes value 1 if the private agents expect the
optimizing type to choose the same policy as the commitment type, πo = πc, and σ = 0
otherwise.11 This function for the law of motion for beliefs on path follows Bayes’ rule
and is given by

ρ ′ (π|πc,σ) =


ρ

ρ+(1−ρ)σ if π = πc

0 o/w
. (8)

For all subsequent analyses we assume that the policy makers are sufficiently impa-
tient so that the Ramsey outcome is not incentive compatible:

Assumption 3. The discount factor βo is small enough so that

w (xramsey,π∗ (xramsey)) −w (xramsey,πramsey) >
βo

1 −βo
[V0 (1) − V0 (0)] .

As in the static case, we characterize the equilibrium by solving the problem of the
rule designer that chooses the equilibrium outcome subject to the appropriate incentive
constraints. The rule designer’s problem is12

W (ρ) = max
x,πc,πo,σ

ρ
[
w (x,πc) +βW0

(
ρ ′ (πc|πc,σ)

)]
(9)

+ (1 − ρ)
[
w (x,πo) +βW0

(
ρ ′ (πo|πc,σ)

)]
subject to the implementability condition, (4), and the incentive compatibility constraint
for the optimizing type, (7), and πo = σπc + (1 − σ)π∗ (x), given the law of motion of
beliefs ρ (π|πc,σ) defined in (8).

For simplicity, we abstract from mixed strategies for the optimizing type. In Appendix
C.2, we show that this is without loss of generality in this two-period economy. Under
our assumptions, the outcome in which the optimizing type follows the rule with prob-
ability σ ∈ (0, 1) and the ex-post optimal policy with probability 1 − σ is dominated in
terms of welfare by the best equilibrium in which the optimizing type follows the rule
with probability one. This is because of two reasons. First, since uncertainty is beneficial
and the posterior is a martingale, mixing introduces volatility in the posterior without af-
fecting its mean, which lowers the rule designer’s expected continuation value. Second,
as we show in the appendix, mixing tightens the optimizing type’s incentive constraint
because w is concave in π and V0 is concave in ρ and thus reduces static payoffs.

11If the rule designer chooses πo = πc, then a deviation only happens off-path and thus Bayes’ rule does
not pin down the posterior. On the right side of (7), we assume that after a deviation, the posterior goes
to zero. This is reasonable because the commitment type cannot deviate. Moreover, it also constitutes the
worst punishment if the optimizing type deviates.

12In Appendix C, we define an equilibrium for the policy game and show that the problem in (9) charac-
terizes the best Perfect Bayesian Equilibrium outcome.
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We can then reduce the problem above to a discrete choice between two options: sep-
arating or pooling. If the rule designer chooses to separate, it chooses the best static rule.
Because of Assumption 3, the Ramsey outcome is not incentive compatible and the opti-
mizing type will choose the static best response and not follow the rule so the type of the
policy maker is revealed at the end of the period. Thus the continuation value is either
W0 (1) with probability ρ orW0 (0) with probability 1− ρ. The value of separating is then

Wsep (ρ) =W0 (ρ) +β [ρW0 (1) + (1 − ρ)W0 (0)] .

If the rule designer chooses to pool, it sets the rule to πico,1 (ρ), which is the most
stringent policy π consistent with the incentive compatibility constraint for the optimizing
type:

w (φ (πico,1 (ρ)) ,πico,1 (ρ)) +βV0 (ρ) = w (φ (πico,1 (ρ)) ,π∗ (φ (πico,1 (ρ)))) +βV0 (0) .

In this case, both types of policy makers follow the rule in equilibrium and thus uncer-
tainty about their type is preserved and the continuation value is W0 (ρ). The value of
pooling is then

Wpool (ρ) = w (φ (πico,1 (ρ)) ,πico,1 (ρ)) +βW0 (ρ) .

The next proposition shows that designing a rule that preserves uncertainty about the
policy maker’s type is valuable when its reputation is low:

Proposition 2. Under Assumptions 1–3, there exist ρ∗1 and ρ∗2 with 0 < ρ∗1 6 ρ∗2 < 1 such
that:

1. For ρ ∈
[
ρ∗2, 1

]
there is separation (σ = 0) and π = π.

2. For ρ ∈ [0, ρ∗1] there is pooling (σ = 1) and πc (ρ) > π.

The key implication of this proposition is that in contrast to the static case, when rep-
utation is low, the rule designer recommends more lenient rules in order to preserve un-
certainty about the policy maker’s type in the future. To see why this is the case, consider

Wpool (ρ) −Wsep (ρ) = ∆ω (ρ) +β∆Ω (ρ) ,

where ∆Ω (ρ) ≡ W0 (ρ) − [ρW0 (1) + (1 − ρ)W0 (0)] are the dynamic benefits of pooling and
∆ω (ρ) are the static benefits of pooling given by

∆ω (ρ) ≡ w (φ (πico,1 (ρ)) ,πico,1 (ρ)) −W0 (ρ) .
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The dynamic and static benefits of pooling are plotted in Figure 2. Since uncertainty is
beneficial, we know that ∆Ω (ρ) > 0 for all ρ ∈ (0, 1) and equal to zero when there is
no uncertainty and ρ ∈ {0, 1}. Also, by construction, the static benefits of pooling are
zero for ρ = 0, since πico,1 (0) = πo,0 (0) = π∗ (x0 (0)), and negative for ρ = 1, since W0 (1)
attains the Ramsey value andw (φ (πico,1 (ρ)) ,πico,1 (ρ)) < Wramsey because the incentive
constraint is assumed to be binding for all ρ (Assumption 3).

Figure 2: Dynamic and static benefits of pooling
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Combining these observations, it is immediate that for ρ close to one, Wsep (ρ) >

Wpool (ρ) since the dynamic benefits are approximately zero and ∆ω (ρ) < 0. In the
proof, we show that the static benefits of pooling ∆ω (ρ) are increasing in ρ for low levels
of reputation. Intuitively, in the pooling regime the rule designer induces the optimizing
type to follow a more stringent policy than the static best response, πico,1 (ρ) < π

∗ (x0 (ρ))

at the cost of forcing the commitment type to follow a more lenient policy, πico,1 (ρ) > π.
When reputation is low enough, the expected policy becomes more stringent in the pool-
ing regime than in the separating regime, because in the latter, the private agents expect
the recommended policy to be followed with a low probability. Thus, pooling has both
static and dynamic benefits and is therefore preferable to separation.13

13Note that the positive static benefits of pooling for low levels of reputation do not depend on uncer-
tainty being beneficial. Thus pooling may be optimal for low levels of reputation even in economies that
do not satisfy our assumptions and thus have a convex continuation value W0 (ρ) and negative dynamic
benefits of pooling.
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For the Barro–Gordon example we can provide a tighter characterization of the opti-
mal policy and show that it has a cutoff property, i.e., ρ∗1 = ρ∗2. The proof for this is in
the appendix. (For the bailout example we verify that this is the case numerically.) The
optimal dynamic rule in this case is plotted in Figure 3.

Figure 3: Optimal dynamic rule
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Let us now consider what Proposition 2 implies for our two examples. In the bailout
example, the optimal static rule is a strict no-bailout policy. However, in the dynamic
model, on-path bailouts are necessary to achieve good outcomes when reputation is low.
In particular, counter to conventional wisdom, bailouts along the equilibrium path are
necessary in order to impose future discipline on financial institutions. This is precisely
because allowing for bailouts makes it easier for the optimizing type to follow the de-
signer’s recommendation and thus helps to preserve uncertainty going forward. This
is beneficial because uncertainty about the policy maker’s type prevents bankers from
taking on excessive risk by exerting little effort. Similarly, in the Barro–Gordon model,
having looser inflation targets is beneficial when reputation is low.

4.2 Limit of finite horizon

We now show that the insights from the two-period model extend to any horizon. In
particular, we analyze the limit of the finite-horizon economy and show that an analog of
Proposition 2 holds.

Let k denote the horizon of the economy, i.e., the number of periods left. Let {πk (ρ)}
∞
k=0

be the optimal rules set by the rule designer at each horizon as a function of the prior ρ.
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In the previous sections, we characterized the case for k = 0, 1. We will use the following
property:

Assumption 4. The gains of best responding are decreasing in x, in that

G (x) ≡ w (x,π∗ (x)) −w
(
x,φ−1 (x)

)
is monotone decreasing in x.

This property is satisfied in our two examples. In the appendix we provide an addi-
tional sufficient condition on the general environment which implies this property.

To set up our next proposition, we define the following objects. First, let (xCK,πCK) be
the private action and the policy that emerge in the best sustainable equilibrium for the
infinite-horizon version of the model where ρ = 0. That is, xCK solves

w
(
xCK,φ−1 (xCK)

)
1 −βo

= w (xCK,π∗ (xCK)) +
βo

1 −βo
W0 (0) , (10)

where W0 (0) = V0 (0) is the value of the worst equilibrium (the repetition of the static
Nash for ρ = 0) and πCK = φ−1 (xCK). Note that because of Assumption 3, xCK is higher
(resp., lower) than the Ramsey outcome when wx < 0 (resp., wx > 0 ).

The next proposition shows that the limit of the finite-horizon economy has the fol-
lowing property: there are two cutoffs and it is optimal to pool for priors below one cutoff
and separate for priors above the other cutoff.

Proposition 3. Under Assumptions 1–4, as the horizon k→∞ we have that:

1. For ρ = 0,Wk (0)→W0 (0) / (1 −β) and Vk (0)→ V0 (0) / (1 −βo).

2. There exists ρ̂ ∈ (0, ρ∗1) such that for ρ ∈ (0, ρ̂], there is pooling for all k and πk (ρ)→ πCK.

3. For ρ ∈ (ρ∗2, 1], there is separation for all k and πk (ρ) = π for all k.

Qualitatively, the optimal rule is the same as in the two-period model. For high values
of ρ, above the cutoff ρ∗2, it is optimal to separate because pooling is associated with static
losses that are not compensated by the dynamic gains. For low levels of reputation, it
is optimal to choose rules that do not reveal the type of the policy maker. Note that the
optimal policy in the pooling regime does not depend on the prior ρ in the limit. This is
because if it is optimal to pool today it is also optimal to pool in all subsequent periods.
In this case, the type of the policy maker will never be revealed and so ρ does not affect
the value on the equilibrium path. The initial prior also does not affect the value of the
deviation because the posterior jumps to zero independently of the initial value. Thus the
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value of pooling in (0, ρ̂] is independent of ρ, as shown in Figure 4. Moreover, the policy
converges to its value in the best sustainable equilibrium when it is known that the policy
maker is the optimizing type.

Notice that there is a discontinuity at ρ = 0. This is because when ρ = 0 and the
horizon is finite it is not possible to incentivize the optimizing type to choose any policy
other than its static best response.

For intermediate values, ρ ∈
(
ρ̂, ρ∗1

)
, the equilibrium strategies may not converge as

the horizon goes to infinity, and randomization may be optimal.

Figure 4: Equilibrium values
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So far we have allowed the rule designer to choose a new rule in each period as a func-
tion of the current reputation of the policy maker. In practice, opportunities for revising
and introducing new rules arise infrequently. Suppose for instance that rules are “sticky”
in that they can only be changed in a given period with probability α < 1. The inability to
change rules for sure next period affects the rule designer’s value when it chooses to pool.
In particular, choosing πc equal to the lowest value consistent with the optimizing type’s
incentive compatibility constraint induces the optimizing type to pool in the current pe-
riod, but it may induce separation in future periods if the rules cannot be adjusted. Thus,
the rule designer may want to choose an even more lenient policy, which implies that the
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optimizing type’s incentive constraint is slack, to ensure pooling next period in the event
that the rule cannot be adjusted. However, this trade-off vanishes in the limit for ρ ∈ [0, ρ̂]
as the horizon goes to infinity since limK→∞ πKico,t (ρ) = limK→∞ πKico,t+1 (ρ) = πCK. Thus
the minimal rule that ensures pooling is constant over time. This observation implies that
with sticky policies (α < 1) there exists an equilibrium with the same properties outlined
in Proposition 3.

5 Transparency of rules

We now study the implications of our theory for the optimal degree of transparency of
the rule. Should the rule be designed so that a deviation by the policy maker is easily
detectable? In other words, we ask if perfect monitoring is always desirable. In repeated
policy games with no reputational considerations, perfect monitoring is always desirable;
see Atkeson and Kehoe (2001), Atkeson et al. (2007), and Piguillem and Schneider (2013).
In contrast, we show that with reputational considerations, perfect monitoring is desir-
able only for low levels of reputation, while imperfect monitoring is desirable for high
levels of reputation.

5.1 Optimal degree of monitoring

We first consider the case in which the rule designer can control the degree to which the
private agents and future rule designers can monitor the policies chosen by the policy
maker. In particular, suppose the private agents cannot directly observe the policy π, but
they can only observe a signal π̃ = π + ε, where ε ∼ N

(
0,σ2

ε

)
. The rule designer can

choose the standard deviation of the noise, σε, as part of the optimal rule design. We
interpret the choice of large noise as standing in for complicated rules whose deviations
are hard to detect for the private agents. We say that a rule is transparent if σε = 0 and
opaque if σε > 0.

For a given σε, the law of motion for beliefs is

ρ ′ (π̃|ρ,σε,πc,πo) =
ρg (π̃− πc|σε)

ρg (π̃− πc|σε) + (1 − ρ)g (π̃− πo|σε)
, (11)

where g is the PDF of a Normal distribution with mean zero and variance σ2
ε. We can then
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write the rule designer’s problem for the twice repeated economy as

max
x,πc,πo,σε

ρ

[
w (x,πc) +β

ˆ
W0
(
ρ ′ (πc + ε)

)
g (ε)dε

]
(12)

+ (1 − ρ)

[
w (x,πo) +β

ˆ
W0
(
ρ ′ (πo + ε)

)
g (ε)dε

]
subject to the implementability constraint, x = ρπc + (1 − ρ)πo, and the incentive com-
patibility constraint for the optimizing type,

w (x,πo)+βo
ˆ
V0
(
ρ ′ (πo + ε, ρ)

)
g (ε)dε > w (x,π)+βo

ˆ
V0
(
ρ ′ (π+ ε, ρ)

)
g (ε)dε ∀π,

(13)
taking as given the law of motion for beliefs defined in (11). Note that the values in the
final period,W0 and V0, are the static values and are not affected by σε.

The next proposition establishes that for low levels of reputation it is optimal to have
perfectly transparent rules (σε = 0), while for higher values of reputation it is optimal to
have opaque rules. Let ρ∗1 and ρ∗2 be the cutoffs defined in Proposition 2:

Proposition 4. Under Assumptions 1–4:

1. For ρ ∈
[
0, ρ∗1

]
there is pooling and signals are perfectly informative, σε = 0.

2. For ρ ∈
[
ρ∗2, 1

]
there is separation and signals are not perfectly informative, σε > 0.

Consider first low levels of reputation. From Proposition 2, we know that if signals are
perfectly informative, it is optimal to be in the pooling regime, so πo = πc. Conditional
on pooling, it is preferable to choose σε = 0 to relax the incentive constraint (13). In fact,
without noise, (13) reduces to

w (x,πo) +βoV0 (ρ) > w (x,π) +βoV0 (0) ∀π, (14)

and so the spread in continuation values [V0 (ρ) − V0 (0)] provides the maximal incentives
to the optimizing type. To see this, first note that for any σε > 0

ˆ
V0
(
ρ ′ (π+ ε, ρ)

)
g (ε)dε > V0 (0) ,

so the right side of (13) is lowest at σε = 0. Second, by concavity of V0 we have that

V0 (ρ) >

ˆ
V0
(
ρ ′ (πo + ε, ρ)

)
g (ε)dε

since ρ =
´
ρ ′ (πo + ε, ρ)g (ε)dε, so the left side of (13) is highest at σε = 0. Thus, since
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we know that for low levels of reputation pooling is preferable to separating, we have
that the optimal rule has pooling and it is perfectly transparent.

Consider now high levels of reputation. From Proposition 2, we know that for ρ ∈[
ρ∗2, 1

]
separation is preferable to pooling when signals are perfectly informative. As ar-

gued above, conditional on pooling, it is preferable to choose σε = 0 to relax the incentive
constraint (13). Thus, for these high levels of reputation, pooling cannot be optimal and
we are in the separating regime (πo 6= πc). Suppose by way of contradiction that it is opti-
mal to have perfectly informative signals, σε = 0. Since types are perfectly revealed at the
end of the first period, we have that ρ ′ ∈ {0, 1} and the only incentive-compatible policy
for the optimizing type is πo = π∗ (x). Note that we can support the same policies by
choosing σε = ∞. This alternative rule has the same static payoff but prevents learning
about the regulator’s type and therefore ρ ′ = ρ, because the signal π̃ is totally uninfor-
mative. This increases the expected continuation value because uncertainty is beneficial,
W (ρ) > ρW (1) + (1 − ρ)W (0). Thus, the rule designer’s payoff is strictly higher and
therefore it cannot be that σε = 0. In principle, it may be optimal to choose an intermedi-
ate value for the noise σε to induce the optimizing type to do something better than the
static best response.

The results in Proposition 4 are also informative about the optimal tenure of the policy
maker. In fact, an alternative instrument for the rule designer to separate the static policy
choice from the evolution of the reputation of the policy maker in subsequent periods
is to terminate the current policy maker’s tenure after one period. This is equivalent
to choosing a perfectly opaque rule with σε = ∞. Thus early termination (one-period
tenure) is optimal when the reputation of a new policy maker is sufficiently high.

5.2 Stochastic rules

An alternative way of introducing opacity in rules is to allow the rule designer to choose
stochastic rules even though fundamentals are deterministic. The rule designer can now
choose a rule that consists of a set of policies, Σc, and a probability distribution over
these policies, σc. We can interpret this as introducing clauses that allow policies to be
conditioned on irrelevant details. The commitment type will then draw a policy from this
distribution. The optimizing type can also randomize across policies. We will denote its
strategy as σo.

The rule designer’s problem is then

max
x,σo,σc

ˆ [
w (x,π) +βW0

(
ρ ′ (π|σo,σc, ρ)

)]
[ρσc (π) + (1 − ρ)σo (π)]dπ (15)
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subject to σc,σo ∈ ∆ ([π, π̄]), the implementability condition,

x = φ

(ˆ
π [ρσc (π) + (1 − ρ)σo (π)]dπ

)
, (16)

and the incentive compatibility constraint for the optimizing type, ∀π ∈ Suppσo,∀π̃ ∈
Suppσo ∪ Suppσc ∪ {π∗ (x)}

w (x,π) +βV0
(
ρ ′ (π|σo,σc, ρ)

)
> w (x, π̃) +βV0

(
ρ ′ (π̃|σo,σc, ρ)

)
, (17)

given the evolution of beliefs,

ρ ′ (π|σo,σc, ρ) =
ρσc (π)

ρσc (π) + (1 − ρ)σo (π)
. (18)

We say that a rule is stochastic if the support of σc, Σc, contains more than one element,
while a rule is deterministic if the support of σc is a singleton. Similar to Proposition 4, we
show that if the policy maker’s reputation is high enough, then recommending stochastic
rules is optimal, while if its reputation is sufficiently close to zero, then it is optimal to
have deterministic rules that provide strong incentives for the optimizing type.

Proposition 5. Suppose Assumptions 1–4 hold. Then, there exist ρ1 and ρ2 with 0 < ρ1 6

ρ2 < 1 such that:

1. For ρ ∈ [ρ2, 1] it is optimal to have stochastic rules.

2. For ρ ∈ [0, ρ1] a deterministic rule is optimal and, in particular, πc = πico (ρ) with proba-
bility one.

Consider first the case in which the policy maker’s reputation is close to one. The
optimality of stochastic rules follows from the properties of Bayes’ rule and continuation
values being increasing in the prior and does not rely on uncertainty being beneficial.
To establish the result, suppose by way of contradiction that it is optimal to choose a
rule that recommends policy π with probability one. This is the best deterministic rule,
as shown in Proposition 2. Consider a perturbation in which the rule puts a small but
positive probability, ε, on the static best response. When ρ is close to one, on observing
the static best response, the agents attribute it to the perturbation of the commitment type
rather than to the optimizing type. Consequently, the posterior that the policy maker is
the commitment type rises sharply, which increases the expected continuation value of
the perturbation and more than compensates the static losses.14

14Note that forcing the commitment type to randomize reduces the variance of the posterior. In fact, un-
der the deterministic rule with separation, the posterior is one with probability ρ and zero with probability

26



The case with reputation close to zero instead relies on uncertainty being beneficial.
The argument here mirrors the one provided to show that randomization by the opti-
mizing type is not optimal. Randomization tightens the optimizing type’s incentive con-
straint, resulting in a more lenient expected policy, which in turn lowers the static payoff
in addition to the dynamic losses that arise because uncertainty is beneficial.

The message of this section is that when the policy maker’s reputation is low, rules
should be transparent and easily interpretable so that deviations are easily detectable.
This is because providing incentives to the optimizing type is critical, as in Atkeson et al.
(2007). In contrast, when the policy maker’s reputation is high, rules should be opaque
and hard to interpret. This is because the benefits of maintaining uncertainty about the
policy maker’s type outweigh the costs associated with looser incentives to the optimiz-
ing type. This interpretation can account for why policy institutions with arguably high
credibility (such as the U.S. Federal Reserve) do not rely on strict numerical rules. For
instance, in an influential policy speech about the conduct of monetary policy, the Fed
chairman Jerome Powell said:

In seeking to achieve inflation that averages 2 percent over time, we are not
tying ourselves to a particular mathematical formula that defines the average.
Thus, our approach could be viewed as a flexible form of average inflation
targeting. Our decisions about appropriate monetary policy will continue to
reflect a broad array of considerations and will not be dictated by any formula.
(Powell, 2020)

Moreover, policy rules are often based on soft numerical targets that leave room for mul-
tiple interpretations and are hard to monitor. For example, chairman Powell said “speci-
fying a numerical goal for employment is unwise, because the maximum level of employ-
ment is not directly measurable and changes over time for reasons unrelated to monetary
policy (Powell, 2020).” Similarly, the fiscal rules in the European monetary union rely on
arguably opaque measures of output gaps provided by the European Commission itself.15

6 Role of private agents

In this section, we show that the rule designer’s desire to influence the actions of the pri-
vate agents is critical for our results. The macroeconomics literature on rules and time
inconsistency typically considers two types of models. First, in the tradition of Kydland

1 − ρ. Under our perturbation, the posterior is one with probability ρ (1 − ε) and ρε/ [ρε+ (1 − ρ)] with
probability ρε+ (1 − ρ).

15See https://www.europarl.europa.eu/RegData/etudes/BRIE/2016/574407/IPOL_BRI(2016)574407_EN.pdf.
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and Prescott (1977), there are models in which the policy maker is benevolent (i.e., has the
same preferences as society) and time-inconsistency problems arise because of external-
ities associated with the presence of private agents; see Chari et al. (1988). Examples in-
clude Barro and Gordon (1983b), Chari and Kehoe (1990), Athey et al. (2005), and Kareken
and Wallace (1978). Our setup follows in this tradition. Second, the literature also con-
siders principal–agent or delegation economies in which the policy maker (the agent) has
different preferences than society (the principal). This difference results in a conflict of
interest between the principal and the agent which generates a time inconsistency prob-
lem. Examples include Amador et al. (2006), Amador and Bagwell (2013), and Halac and
Yared (2014).

One implication of the principal–agent framework is that under commitment, if the
agent has any private information, the principal always prefers to learn the agent’s pri-
vate information. In other words, uncertainty is never beneficial. The critical difference
between our model and the principal–agent framework is the presence of a third agent,
whom we call private agents, that take an action otherwise taken by the principal.16 It
is because of the rule designer’s desire to influence the actions of these private agents
that uncertainty may be beneficial. Next, we illustrate this claim by means of a simple
example.

Consider a principal–agent or delegation framework. There is a rule designer (princi-
pal) and a policy maker (agent). To better relate to this literature, we consider the pref-
erence type interpretation of the policy maker discussed in Section 2. The policy maker
can be one of two types, θ ∈ {θo, θc}, where θc corresponds to the commitment type and
θo to the optimizing type. The type θ determines the cost of deviating from the policy
recommended by the rule designer.17 Define ρ to be the rule designer’s prior of facing the
θo type. At the beginning of the period, the rule designer takes an action x and proposes a
menu of actions πr (θ) to the policy maker. The policy maker (agent) then takes an action
π. The rule designer’s preferences are

w (x,π) ,

and the policy maker’s preferences are

v (x,π) − θ |π− πr (θ)| .

16This difference in preferences between the policy maker and the rule designer is not critical. For exam-
ple, it is easy to show that our conclusions hold in a Barro–Gordon model where the policy maker has a
different inflation bias than society.

17Alternatively, we can assume that the rule designer can impose a punishment or reward ζ ∈
[
0, ζ̄
]

on
the agent after it observes the agent’s action and θ measures the value of this punishment or reward to the
agent.
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We assume that θc is sufficiently large so that the rule designer can effectively control
the action of the θc type agent and that θo = 0. Thus, as in our basic framework, the
rule designer directly chooses the action of the θc (commitment) type but not of the θo
(optimizing) type. The principal here chooses x directly without having to influence the
private agents to choose a desirable level of x. This is the critical difference from our
environment.

We next show that in this principal–agent setting, uncertainty is never beneficial and
pooling is never optimal.

Define π∗v (x) ≡ arg maxπ v (x,π). Consider first the static principal–agent problem:

W0 (ρ) = max
x,πc,πo

ρw (x,πc) + (1 − ρ)w (x,πo) (19)

subject to the incentive constraint for the optimizing type

πo = π
∗
v (x) .

Note that the problem (19) differs from the static problem in our economy, (3), because
there is no implementability constraint (4).

Proposition 6. In the principal–agent economy, uncertainty is never beneficial in thatW0 (ρ) 6

ρW (1) + (1 − ρ)W0 (0).

The proof for this proposition is straightforward. For any ρ ∈ (0, 1) we have

W0 (ρ) = max
x,πc

{ρw (x,πc) + (1 − ρ)w (x,π∗ (x))}

6 ρmax
x,πc

w (x,πc) + (1 − ρ)max
x
w (x,π∗ (x))

= ρW0 (1) + (1 − ρ)W0 (0) .

The idea is simply that with more information the rule designer can better tailor x to the
policy π chosen by the policy maker. When the rule designer knows the policy maker’s
type, it can condition x to the type, while when it is uncertain it must choose a single value
of x. In our environment instead, the rule designer does not control x directly and must
influence the private agents to take desirable actions. Under the sufficient conditions
described in Section 3, learning the policy maker’s type can incentivize the private agents
to choose a very unfavorable action from the principal’s perspective. Therefore, the rule
designer prefers if the private agents do not learn the policy maker’s type. This leads the
rule designer to choose a policy recommendation which does not lead to the revelation of
the policy maker’s type.

Consider now the twice repeated problem for the principal–agent economy. When
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the rule designer has commitment, we can think of its problem as choosing an action x,
proposing policies πc and πo, and promised values for the optimizing type conditional
on the chosen policy, Vo (π). Without loss of generality, we can set Vo (π) = V for all
π /∈ {πo,πc}, where the value V ≡ minx maxπ v (x,π) is the worst continuation value that
can be promised to the optimizing type. The rule designer’s problem is

W̄ (ρ) = max
x,πc,πo,Vo(π)

ρ
[
w (x,πc) +βW̄0

(
Vo (πc) , ρ ′c

)]
+(1 − ρ)

[
w (x,πo) +βW̄0

(
Vo (πo) , ρ ′o

)]
subject to the incentive constraints for the θo type,

v (x,πo) +βVo (πo) > v (x,π) +βV ∀π /∈ {πo,πc} ,

v (x,πo) +βVo (πo) > v (x,πc) +βVo (πc) .

The two incentive constraints require that the θo type prefers to follow its recommended
action rather than engage in either a detectable deviation or follow the recommended
action for the θc type respectively. The rule designer’s continuation value W̄0 given
promised value V and prior ρ is

W̄0 (V , ρ) = max
x,πc,πo

ρw (x,πc) + (1 − ρ)w (x,πo)

subject to the incentive constraint for the optimizing type,

v (x,πo) > v (x,π) ∀π,

and the optimizing type’s promise-keeping constraint,

v (x,πo) = V .

Proposition 7. In the twice repeated principal–agent economy, pooling is never optimal.

The proof of this proposition follows from two observations. First, similar to Propo-
sition 6, uncertainty is not beneficial in the last period because by knowing the policy
maker’s type, the principal can better tailor its action to the policy. This implies that pool-
ing does not have dynamic benefits, as defined in Section 4.1. The second observation is
that providing incentives to the optimizing type in the first period does not require that
there be no revelation of information, and thus the preservation of the optimizing type’s
reputation. This is because the rule designer can promise continuation value Vo > V by
committing to an action x in the second period that is more favorable to the optimizing
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type conditional on the optimizing type following the recommendation. This implies that
pooling also does not have static benefits, as defined in Section 4.1.18 In our environment
instead, the rule designer cannot force private agents to reward the optimizing type in the
second period if the rule designer loses its reputation. Therefore, the loss in reputation is
the only way the rule designer can provide incentives to the optimizing type even if the
rule designer has commitment (See Appendix E.1).

7 Conclusion

In this paper, we study the optimal design of rules in a dynamic model when there is a
time inconsistency problem and uncertainty about whether the policy maker can commit
to follow the rule ex post. We show that in a large class of economies preserving uncer-
tainty about the policy maker’s type is preferable from an ex-ante perspective. Therefore,
learning the type of the policy maker can be costly. When the policy maker’s reputation
is low, we show that reputational considerations imply that the optimal rule is more le-
nient than the one that would arise in a static environment. For example, in the context
of financial regulation, on-path bailouts are necessary to discipline future risk taking by
financial institutions. Moreover, opaque rules are preferable to transparent ones when
reputation is high.

In our analysis we abstract from the question on the optimal-degree flexibility when
the policy maker has private information about the state of the economy considered by
the delegation literature; see, for instance Athey et al. (2005), Amador et al. (2006), and
Halac and Yared (2014). In our economy with no fundamental uncertainty, if the policy
maker follows the rule for sure, it is trivially optimal to leave no flexibility, and by doing
so, implement the Ramsey outcome. An interesting avenue for future work is to study
how the incentives to build reputation considered in this paper interact with the choice
of how much flexibility to leave to the policy maker.
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Appendix (Not for publication)

A Omitted proofs

A.1 Proof of Proposition 1

Here we provide the proof for the case in which wx < 0. The case with wx > 0 follows
from a symmetric argument.

Suppose first that πc (ρ) = π for all ρ. We first prove a preliminary result.

Claim. Under Assumptions 1 and 2, if wx < 0 then π∗ (x) is increasing and convex and
x (ρ) is decreasing and convex.

Proof. The optimizing type’s static best response, π∗ (x), is implicitly defined by the first
order condition:

wπ (x,π∗ (x)) = 0 (20)

so by the implicit function theorem we have

π∗x (x) = −
wxπ (x,π∗ (x))
wππ (x,π∗ (x))

> 0 (21)

where the inequality follows from wxπ > 0 and wππ < 0.
Implicitly differentiating (20) twice we have

π∗xx (x) =
wπππ (x,π∗ (x))π∗x (x)

2 + 2wππxπ∗x (x) +wxπx (x,π∗ (x))
(−wππ (x,π∗ (x)))

Thus, in order for π∗ (x) to be convex we need

wπππ (x,π∗ (x))π∗x (x)
2 + 2wππxπ∗x (x) +wxπx (x,π∗ (x)) > 0.

Notice that the expression above can be equivalently written as

[π∗x (x) , 1]∇2wπ (x,π)

[
π∗x (x)

1

]

which is positive since wπ (x,π) is convex by Assumption 2. Hence π∗ (x) is increasing
and convex.

Consider now
x (ρ) = φ (ρπc + (1 − ρ)πo (ρ)) (22)
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where πo (ρ) = π∗ (x (ρ)). So

x ′ (ρ) =
φ ′ [πc − πo]

[1 −φ ′ (1 − ρ)π∗x (x (ρ))]
< 0 (23)

which is negative since πo > π and 1−φ ′ (1 − ρ)π∗x (x) > 0, where the latter follows from
condition 3 of Assumption 2. Twice differentiating the implementability condition (22)
we obtain

x ′′ (ρ) = φ ′′
[
πc − πo + (1 − ρ)π ′o (ρ)

]2
+φ ′

[
−π ′o (ρ) + (1 − ρ)π ′′o (ρ) − π

′
o (ρ)

]
(24)

= φ ′′
[
πc − πo + (1 − ρ)π ′o (ρ)

]2
+φ ′

[
(1 − ρ)π ′′o (ρ) − 2π∗x (x) x

′ (ρ)
]

and since πo (ρ) = π∗ (x (ρ)) then

π ′′o (ρ) = π
∗
xx (x) x

′ (ρ)2 + π∗x (x) x
′′ (ρ) . (25)

Therefore, using (25) to substitute for π ′′o (ρ) in (24), we obtain

x ′′ (ρ) =
φ ′′ [πc − πo + (1 − ρ)π ′o (ρ)]

2 +
[
φ ′ (1 − ρ)π∗xx (x) x

′ (ρ)2 − 2φ ′π∗x (x) x ′ (ρ)
]

[1 −φ ′ (1 − ρ)π∗x (x)]
(26)

Thus x ′′ > 0 follows from Assumption 1, φ ′ > 0, φ ′′ > 0, π∗x (x) > 0, and π∗xx (x) > 0,
where the last two inequalities were proved earlier.

We now turn the proof of the Proposition. Define

w̄ (x) = w (x,π)

w∗ (x) = w (x,π∗ (x))

and
F (ρ, x (ρ)) = ρw̄ (x (ρ)) + (1 − ρ)w∗ (x (ρ))

and soW0 (ρ) = F (ρ, x (ρ)). We want to show thatW0 (ρ) is concave. We have,

W ′′0 (ρ) =
[
1, x ′ (ρ)

]
∇2F (ρ, x (ρ))

[
1

x ′ (ρ)

]
+∇F (ρ, x (ρ))

[
0

x ′′ (ρ)

]
(27)

= 2Fρxx ′ (ρ) + Fxxx ′ (ρ)
2 + Fx (ρ, x (ρ)) x ′′ (ρ) .

Thus to prove the result it is sufficient to show that the above expression is negative.
We proceed in several steps. First we show that Fxxx ′ (ρ)

2 < 0 and then we show that
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2Fρxx ′ (ρ) + Fx (ρ, x (ρ)) x ′′ (ρ) 6 0.
To see that Fxxx ′ (ρ)

2 < 0, note that

Fx = ρwx (x,πc) + (1 − ρ)wx (x,πo) < 0 (28)

since wxπ > 0, and so

Fxx = ρw̄xx (x (ρ)) + (1 − ρ)w∗xx (x (ρ)) (29)

= ρwxx (x,πc) + (1 − ρ) [wxx (x,πo (x)) +wxπ (x,π)π∗x (x)] .

The first term in (29) is negative since wxx < 0. For the second, note that from (21), we
have that

π∗x (x) = −
wxπ (x,πo)
wππ (x,πo)

(30)

Therefore, using (30) we can write the second term in (29) as

wxx (x,πo) +wxπ (x,πo)π∗x (x) =
wxx (x,πo)wππ (x,πo) −wxπ (x,πo)

2

wππ (x,πo)
< 0

where the inequality follows fromw being concave in (x,π). Therefore, both terms in (29)
are negative and so Fxxx ′ (ρ)

2 < 0.
Now note that we can write Fρx as

Fρx = w̄x (x (ρ)) −w
∗
x (x (ρ)) = wx (x,πc) − [wx (x,π∗ (x)) +wπ (x,π∗ (x))π∗x (x)] (31)

= wx (x,πc) −wx (x,π∗ (x)) < 0.

Then from (27) it follows that

W ′′0 (ρ) =2Fρxx ′ (ρ) + Fxxx ′ (ρ)
2 + Fx (ρ, x (ρ)) x ′′ (ρ)

<2Fρxx ′ (ρ) + Fx (ρ, x (ρ)) x ′′ (ρ)

=2 [wx (x,πc) −wx (x,π∗ (x))] x ′ (ρ) + [ρwx (x,πc) + (1 − ρ)wx (x,π∗ (x))] x ′′ (ρ)

where the first inequality follows from the fact that Fxxx ′ (ρ)
2 < 0 and the second equality

follows from (31) and (28). A sufficient condition for the concavity ofW0 is then

2 [wx (x,πc) −wx (x,π∗ (x))] x ′ (ρ) + [ρwx (x,πc) + (1 − ρ)wx (x,π∗ (x))] x ′′ (ρ) 6 0

or, rearranging terms,

2 [wx (x,π∗ (x)) −wx (x,πc)]
− [ρwx (x,πc) + (1 − ρ)wx (x,π∗ (x))]

6 −
x ′′ (ρ)
x ′ (ρ)

. (32)
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Using the expressions for x ′ (ρ) and x ′′ (ρ) in (23) and (26) we have

−
x ′′ (ρ)
x ′ (ρ)

=
φ ′′ [πc − πo + (1 − ρ)π ′o (ρ)]

2 +
[
φ ′ (1 − ρ)π∗xx (x) x

′ (ρ)2 − 2φ ′π∗x (x) x ′ (ρ)
]

φ ′ [πo − πc]

>
−2φ ′π∗x (x)
φ ′ [πo − πc]

x ′ (ρ)

=
2φ ′π∗x (x)

[1 −φ ′ (1 − ρ)π∗x (x (ρ))]

where the first inequality follows from the fact that φ ′′ > 0, φ ′ > 0, π∗xx > 0 and the
denominator is positive, and the last equality follows from using (23) to substitute for
x ′ (ρ). Hence a sufficient condition for (32) is

2 [wx (x,π∗ (x)) −wx (x,πc)]
− [ρwx (x,πc) + (1 − ρ)wx (x,π∗ (x))]

6
2π∗x (x)φ ′

[1 −φ ′ (1 − ρ)π∗x (x)]

or, rearranging terms,

π∗x (x)φ
′ +
wx (x,π∗ (x))
wx (x,πc)

> 1.

Notice that

π∗x (x)φ
′ +
wx (x,π∗ (x))
wx (x,πc)

> π∗x (x)φ
′ (π) +

wx (x,π∗ (x))
wx (x,π)

> 1

where we have used the fact that π∗ (x) ,φ (π) are convex,w (x,π) is concave, and the last
inequality follows from condition 3 of Assumption 2. ThusW ′′0 (ρ) < 0.

As a final step we will show that our assumptions imply that πc is independent of ρ
and in particular equals π. The first order condition of the static government’s problem
with respect to πc is

ρwπ (x,π) + [ρwx (x,π) + (1 − ρ)wx (x,π∗ (x))]
ρφ ′ (·)

[1 −φ ′ (·) (1 − ρ)π∗x (x)]

Since by assumption

wπ (x,π) + [ρwx (x,π) + (1 − ρ)wx (x,π∗ (x))]
φ ′ (·)

[1 −φ ′ (·) (1 − ρ)π∗x (x)]
6 0

it must be that πc = π. Q.E.D.
We next show that the two examples satisfy Assumption 2.

Lemma 1. The Barro-Gordon economy satisfies Assumption 2.
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Proof. Recall that

w (x,π) −
1
2

[
(ψ+ x− π)2 + π2

]
Thus,

wxx = −1 < 0

wππ = −2 < 0

and
wxxwππ −wxπ = 1 > 0.

Therefore the Hessian of w (x,π) is negative semi-definite and thus w (x,π) is concave.
Next, note that wππa = 0,wπππ = 0 and wπaa = 0 and so wπ is convex. Clearly, since

φ (π) = π then φ ′′ = 0. Thus, strategic complementarities are decreasing in reputation
(Condition 2).

Finally, using a little algebra Condition 3 is[
−2 +

2ρ
1 + ρ

]
πc

which is strictly less than zero for any πc positive. Thus, it must be πc = 0 and Condition
3 is satisfied. Next, since

π∗ (x) =
x+ψ

2
we have

π∗x (x)φ
′ (π) =

1
2

.

Therefore
1 > π∗x (x)φ

′ (π) =
1
2
> 1 −

wx (x,π∗ (x))
wx (x,π)

=
1
2

and so Condition 4 is satisfied. Q.E.D.

Lemma 2. If ψ is sufficiently small, then bailout economy satisfies Assumption 2.

Proof. Recall that

w (e,π) = −v (e) + p (e)RH − (1 − p (e)) (1 − π)ψ− c (π)

and thus π∗ (e) is the solution to

(1 − p (e))ψ− c ′ (π) = 0.
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Let’s first show that w (e,π) is concave. We have

we = −v ′ (e) + p ′ (e) (RH + (1 − π)ψ) ,

wee = −v ′′ (e) + p ′′ (e) (RH + (1 − π)ψ) < 0,

weπ = −p ′′ (e)ψ > 0,

wπ = (1 − p (e))ψ− c ′ (π) ,

wππ = −c ′′ (π) 6 0.

So

weewππ −w
2
eπ (33)

=
[
−v ′′ (e) + p ′′ (e) (RH + (1 − π)ψ)

] (
−c ′′ (π)

)
− p ′′ (e)2ψ2.

The first term is positive since v ′′ > 0, p ′′ < 0, and c ′′ > 0 but −p ′′ (e)2ψ2 is negative.
Clearly, the whole expression is positive if ψ is small enough. Thus the Hessian of w is
negative semi-definite which implies that w is concave.

Next, we show that wπ (e,π) is convex. We have

wπ (e,π) = (1 − p (e))ψ− c ′ (π) .

Therefore
wπe = −p ′ (e)ψ,

wπee = −p ′′ (e)ψ > 0,

wπeπ = 0,

wπππ = −c ′′′ (π) = 0.

since c (e) is quadratic and so c ′′′ = 0. Therefore

wπeewπππ −w
2
πeπ =

[
−p ′ (e)ψ

] [
−c ′′′ (e)

]
= 0.

Thus the Hessian of wπ is positive semi-definite and so wπ is convex. Under our func-
tional form assumptions,

p (e) = eα

c (π) = λπ2/2

v (e) = e2/2,
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we have that
e = φ (π) = αη (RH − π)η , η ≡ 1/ (2 −α) ∈ (0, 1)

so φ is decreasing and concave. Thus, strategic complementarities are decreasing in rep-
utation (Condition 2).

We now check that Condition 4 is satisfied. We have to show that the following two
conditions hold:

1 > π∗x (x)φ
′ (π) ,

π∗x (x)φ
′ (π) > 1 −

wx (x,π∗ (x))
wx (x,π)

.

Notice that
π∗x (x)φ

′ (π) =
(
−
p ′ (e)ψ
c ′′ (π)

)
φ ′ (π)

and

1 −
wx (x,π∗ (x))
wx (x,π)

= 1 −
−v ′ (e) + p ′ (e)RH + p ′ (e) (1 − π∗ (e))ψ

−v ′ (e) + p ′ (e)RH + p ′ (e)ψ
= π∗ (e) .

Thus, the two conditions can be written as

1 >
(
−
p ′ (e)ψ
c ′′ (π)

)
φ ′ (π) (34)

and (
−
p ′ (e)ψ
c ′′ (π)

)
φ ′ (π) > π∗ (e) . (35)

Under our functional form assumptions,(
−
p ′ (e)ψ
c ′′ (π)

)
φ ′ (π) =

−αeα−1ψ

λ
ηαη (RH − π)η−1

=
−α (αη (RH − π)η)

α−1
ψ

λ

(
−ηαη (RH − π)η−1

)
=
α1+ηα

2 −α

1

(RH − π)1−ηα
ψ

λ

and since e = αηRηH we have that

π∗ (e) =
1 − p

(
αηR

η
H

)
λ

ψ = [1 − (αRH)
ηα]
ψ

λ
.

By inspection, the first inequality, (34), is satisfied if ψ is sufficiently small while the sec-
ond inequality, (35), is satisfied if RH is sufficiently large. In fact, as RH → 1/α, p (e) → 1
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so π∗ (e)→ 0 while
(
−
p ′(e)ψ
c ′′(π)

)
φ ′ (π) > 0.

Finally, we check that Condition 3 holds. We have

wπ (e,π) + [ρwe (e,π) + (1 − ρ)we (e,π∗ (e))]
φ ′ (·)

[1 −φ ′ (·) (1 − ρ)π∗e (e)]

= (1 − p (e))ψ− c ′ (π)

+
[
ρp ′ (e) [π+ (1 − π)ψ] + (1 − ρ) [πo (e) + (1 − π∗ (e))ψ]

] φ ′ (·)[
1 −φ ′ (·) (1 − ρ)

(
−
p ′(e)ψ
c ′′(π)

)]
which is negative if ψ is sufficiently small since c ′ > 0,we > 0, φ ′ 6 0, and 1 −φ ′π∗e > 0.
Q.E.D.

A.2 Proof of Proposition 2

Consider first ρ close to 1. Since the incentive compatibility is binding, we have that for
some δ > 0, for all ρ

Wramsey − δ >Wpool (ρ) .

Clearly, at ρ = 1, Wsep (1) attains the Ramsey outcome. By continuity, there exists a εδ
sufficiently small such that for all ρ ∈ (1 − εδ, 1) ,

Wsep (ρ) >Wramsey − δ.

Combining the two expressions above we have that for all ρ ∈ (1 − εδ, 1),

Wpool (ρ) < Wsep (ρ)

as wanted.
Consider now ρ close to zero and assume that Assumptions 1 and 2 hold. Thus by

Proposition 1 uncertainty is beneficial, W0 (ρ) > ρW0 (1) + (1 − ρ)W0 (0), and the contin-
uation value is higher under pooling than under the separation policy. To show that it is
optimal to pool, it is sufficient to show that the static benefits of pooling are positive for
priors close to zero, i.e. ∆ω (ρ) > 0 where

∆ω (ρ) = w (φ (πico (ρ)) ,πico (ρ)) −W0 (ρ)

and

W0 (ρ) = [ρw (φ (ρπc + (1 − ρ)πo) ,πc) + (1 − ρ)w (φ (ρπc + (1 − ρ)πo) ,πo)] .

42



To this end, note that at ρ = 0 we have ∆ω (0) = 0 since πico (0) = πo (0) = π∗ (φ (πo (0))).
Thus it is sufficient to show that ∆ω ′ (0) > 0. Note that

W ′0 (ρ) = w (φ (ρπc + (1 − ρ)πo) ,πc) −w (φ (ρπc + (1 − ρ)πo) ,πo)

+ [ρwx (φ (ρπc + (1 − ρ)πo) ,πc) + (1 − ρ)wx (φ (ρπc + (1 − ρ)πo) ,πc)]φ ′ (ρπc + (1 − ρ)πo)

×
[
πc − πo + (1 − ρ)π ′o (ρ)

]
where we used that wπ (φ (ρπc + (1 − ρ)πo) ,πo) = 0. Therefore,

∆ω ′ (0) =
[
wx (φ (πico (0)) ,πico (0))φ ′ (πico (0)) +wπ (φ (πico (0)) ,πico (0))

]
π ′ico (0)

− {w (φ (πo (0)) ,πc) −w (φ (πo (0)) ,πo (0))

+wx (φ (πo (0)) ,πo (0))φ ′ (πo (0))
[
πc − πo + π

′
o (0)

]}
>
[
wx (φ (πico (0)) ,πico (0))φ ′ (πico (0)) +wπ (φ (πico (0)) ,πico (0))

]
π ′ico (0)

−wx (φ (πo (0)) ,πo (0))φ ′ (πo (0))
[
πc − πo + π

′
o (0)

]
= wx (φ (πico (0)) ,πico (0))φ ′ (πico (0))

[
π ′ico (0) − (πc − πo) − π

′
o (0)

]
where the first inequality follows from w (φ (πo (0)) ,πc) −w (φ (πo (0)) ,πo (0)) < 0 and
the last equality follows from πico (0) = πo (0) which implies thatwπ(φ (πico (0)) ,πico (0)) =
0 . Since wx < 0 and φ ′ > 0 then it is sufficient to show that the term in square brack-
ets is negative. To this end, we next show that π ′ico (0) = −∞ and −(πc − πo) − π

′
o (0) is

bounded.
Let’s start with proving that limρ→0 π

′
ico (ρ) = −∞. Recall that πico (ρ) is implicitly

defined by the incentive compatibility constraint

w (φ (πico (ρ)) ,πico (ρ)) +βV0 (ρ) = w (φ (πico (ρ)) ,π∗ (φ (πico (ρ)))) +βV0 (0) .

Totally differentiating and evaluating at ρ = 0 we have that

wπ (φ (πico (0)) ,πico (0))π ′ico (0) = −βV ′0 (0)

where we used that πico (0) = π∗ (φ (πo (0))). Since

wπ (φ (πico (0)) ,πico (0)) = wπ (φ (πico (0)) ,πo (0)) = 0

and −βW ′0 (0) < 0, it must be that limρ→0 π
′
ico (ρ) = −∞ since wπ > 0 in the relevant

range.
Since −(πc − πo) 6 π̄−π, we are left to show that π ′o (0) is bounded. Recall that πo (ρ)
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is the solution to
wπ (φ (ρπc + (1 − ρ)πo) ,πo) = 0

and so applying the implicit function theorem we have

π ′o (0) = −
wπx (φ (πo (0)) ,πo (0)) x ′ (0)
wππ (φ (πo (0)) ,πo (0))

= −
wπx (φ (πo (0)) ,πo (0))
wππ (φ (πo (0)) ,πo (0))

× φ ′ [πc − πo]
[1 −φ ′π∗x (x)]

.

Using (21) and (23) we can rewrite the expression above as

π ′o (0) = π
∗
x (x (0)) x

′ (0) = π∗x (x (0))
φ ′ [πc − πo]
[1 −φ ′π∗x (x)]

so
|π ′o (0) | 6 |π∗x (x (0)) |

|φ ′ (πo (0)) | [π̄− π]
[1 −φ ′ (πo (0))π∗x (φ (πo (0)))]

<∞
since φ ′ is assumed to be bounded and 1 − φ ′π∗x (x) is generically not equal to zero. In
particular, if the economy satisfies Assumption 2 then [1 −φ ′ (πo (0))π∗x (φ (πo (0)))] > 0.
Suppose not. Then it must be that [1 −φ ′ (πo (0))π∗x (φ (πo (0)))] 6 0 which contradicts
Assumption 2 part 3. Thus π ′o (0) is bounded.

The above claims imply that
[
π ′ico (0) − (πc − πo) − π

′
o (0)

]
< 0 so ∆ω ′ (0) > 0 as

wanted. Q.E.D.

A.3 Assumption 4 satisfied in our examples

Lemma 3. In our two examples, the gains from going to best response are decreasing in x. In
general, this is true if wx(φ(π),π

∗(φ(π)))
wx(φ(π),π)

is close enough to one.

Proof. In the Barro-Gordon model:

G (x) = −
1
2

[(
ψ+ x−

ψ+ x

2

)2

+

(
ψ+ x

2

)2
]
+

1
2

[
ψ2 + x2

]
= −

(
ψ+ x

2

)2

+
1
2

[
ψ2 + x2

]
= −

1
4

[
ψ2 + x2 + 2ψx

]
+

1
2

[
ψ2 + x2

]
=

1
4

[
ψ2 + x2

]
−

1
2
ψx

so
G ′ (x) =

1
2
(x−ψ) = −

1
2
(ψ− x)
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which is negative for all x ∈ [0,ψ] i.e. between the Ramsey and the Markov outcome
(which is the relevant range).

For the bailout example, it is more convenient to consider

G̃ (π) ≡ G (φ (π)) .

Sinceφ is strictly decreasing, we have that G̃ ′ (π) = G ′ (φ (π))φ ′ (π) orG ′ (x) = G̃ ′
(
φ−1 (x)

)
/φ ′ (π)

so G ′ 6 0 if G̃ 6 0. Note that

G̃ (π) = − (1 − p (φ (π))) (1 − π∗ (φ (π)))ψ−c (π∗ (φ (π)))+(1 − p (φ (π))) (1 − π)ψ+c (π) .

Since (1 − p (φ (π)))ψ = c ′ (π∗ (φ (π))) we can write

G̃ ′ (π) = p ′ (φ (π))φ ′ (π) (1 − π∗ (φ (π)))ψ− p ′ (φ (π))φ ′ (π) (1 − π)ψ− (1 − p (φ (π)))ψ+ c ′ (π)

= p ′ (φ (π))φ ′ (π) (π− π∗ (φ (π)))ψ−
[
(1 − p (φ (π)))ψ− c ′ (π)

]
.

Recall that
π∗ (e) =

(1 − p (e))ψ

λ
.

Thus,

G̃ (π) = p ′ (φ (π))φ ′ (π)
(
π−

(1 − p (φ (π)))ψ

λ

)
ψ− [(1 − p (φ (π)))ψ− λπ]

=

[
(1 − p (φ (π)))ψ

λ
− π

] [
−p ′ (φ (π))φ ′ (π) −

λ

ψ

]
ψ.

We are now going to show that the first term in square brackets is positive while the
second is negative. Let’s start with the first. Since we considering π ∈ [0,πo (0)] it must
be that for any ψ, λ, and interior π, the first term is positive since π < π∗ (φ (π)). Consider
next the second term, [−p ′ (φ (π))φ ′ (π) − λ/ψ]. Note that −p ′ (φ (π))φ ′ (π) > 0 and it
is increasing in π. Moreover, πM (ψ) is increasing in ψ. These two observations imply
that we can find a ψ sufficiently small such that the second term is negative for all π ∈
[0,πM (ψ)]. Thus, for ψ small enough, we have that G̃ ′ (π) 6 0.

In general, we have that

G̃ ′ (π) = [wx (φ (π) ,π∗ (φ (π))) −wx (φ (π) ,π)]φ ′ (π) −wπ (φ (π) ,π)

which is negative if

wx (φ (π) ,π)
[
wx (φ (π) ,π∗ (φ (π)))

wx (φ (π) ,π)
− 1
]
φ ′ (π) −wπ (φ (π) ,π) 6 0
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which is true if wx(φ(π),π
∗(φ(π)))

wx(φ(π),π)
is close enough to one. Q.E.D.

A.4 Proof of Proposition 3

The problem for the rule designer for a generic horizon k+ 1 can be written as

Wk+1 (ρ) = max
πc,x,σ∈[0,1]

(ρ+ (1 − ρ)σ)

[
w (x,πc) +βWk

(
ρ

ρ+ (1 − ρ)σ

)]
(36)

+ (1 − ρ) (1 − σ) [w (x,π∗ (x)) +βWk (0)]

subject to the implementability condition,

x = φ ((ρ+ (1 − ρ)σ)πc + (1 − ρ) (1 − σ)π∗ (x)) ,

and the incentive compatibility constraint for the optimizing type,

σ

[
w (x,πc) +βoVk

(
ρ

ρ+ (1 − ρ)σ

)
− [w (x,π∗ (x)) +βoVk (0)]

]
= 0.

The value for the optimizing type for a generic horizon k+ 1 is

Vk+1 (ρ) = σk (ρ)

[
w (xk+1 (ρ) ,πc,k+1 (ρ)) +βoVk

(
ρ

ρ+ (1 − ρ)σ

)]
+ (1 − σk (ρ)) [w (xk+1 (ρ) ,π∗ (xk+1 (ρ))) +βoVk (0)] .

With this setup, we can now turn to the proof of the proposition (as usual we consider
the case with wx < 0):

Part 1. For ρ = 0 it is clear that the equilibrium is the repetition of the static outcome
i.e. all k, Wk (0) = W0 (0) / (1 −β) and Vk (0) = V0 (0) / (1 −βo), since no incentives can
be provided to the optimizing type.

Part 3. Consider ρ ∈ (ρ∗1, 1]. Here we know that in the twice repeated problem it is
optimal to separate in the first period. We now show it is also optimal to separate for all
horizons k > 2. Consider any horizon k+ 1 with k > 1. Suppose it is optimal to separate
for horizons 0, 1, ..., k at prior ρ. We next show it is optimal to separate in k+ 1. Define

∆Vk (ρ) ≡ Vk (ρ) − Vk (0) .
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Note that regardless of the horizon, if there is separation next period we have that

∆Vk (ρ) =
[
V0 (ρ) +

(
β+β2 + ... +βk

)
V0 (0)

]
−
(

1 +β+β2 + ... +βk
)
V0 (0)

= V0 (ρ) − V0 (0)

Thus, by the same argument used in Lemma 7 for the case k = 1, pooling with probability
one is preferable to pooling with some probability σ < 1. Consequently the IC constraint
for the optimizing type is the same as in k = 1 case and so xico,k+1 (ρ) = xico,1 (ρ). Thus,
the only relevant options are pooling or separating with probability one. We can just
compare two values:

W
pool
k+1 (ρ) = w

(
xico,1 (ρ) ,φ−1 (xico,1 (ρ))

)
+βW0 (ρ)

+
(
β2 +β3 + ... +βk+1

)
[ρW0 (1) + (1 − ρ)W0 (0)] ,

W
sep
k+1 (ρ) =W0 (ρ) +

(
β+β2 +β3 + ... +βk+1

)
[ρW0 (1) + (1 − ρ)W0 (0)]

where we used that xico,k+1 (ρ) = xico,1 (ρ). Therefore,

W
sep
k+1 (ρ) −W

pool
k+1 (ρ) =

[
W0 (ρ) −w

(
xico,1 (ρ) ,φ−1 (xico,1 (ρ))

)]
−β {W0 (ρ) − [ρW0 (1) + (1 − ρ)W0 (0)]}

=Wsep
1 (ρ) −Wpool

1 (ρ) > 0

Thus, for ρ > ρ∗1 it is always optimal to separate for any horizon.
Part 2. We now turn to show that for reputation low enough it is optimal to pool with

no randomization. Note that if it is optimal to pool – at least partially – then xk = xico,k (ρ)

and it solves
G (xico,k (ρ)) = β∆Vk−1

(
ρ

ρ+ (1 − ρ)σ

)
(37)

where recall ∆Vk (ρ) ≡ Vk (ρ) − Vk (0) and G (x) = w (x,π∗ (x)) −w
(
x,φ−1 (x)

)
.

First, note that there exists ρ̂ < ρ∗1 such that ∆V1 (ρ) > ∆V0 (ρ) for all ρ ∈ [0, ρ̂] as
showed in Figure 5. To see this, note that

∆V0 (ρ) = ∆V
sep (ρ) = w (x0 (ρ) ,π∗ (x0 (ρ))) −w (x0 (0) ,π∗ (x0 (0)))

and, using the result in Proposition 2 that for ρ 6 ρ∗1 it is optimal to pool without random-
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Figure 5: Dynamic incentives, ∆Vk (ρ)

ρ

0 1ρ∗1 ρ∗2

∆Vk(ρ) = ∆V sep(ρ)

∆V0(ρ)

∆Vk(ρ)

ρ̂

∆V1(ρ)

ization,

∆V1 (ρ) = w
(
xico,1 (ρ) ,φ−1 (xico,1 (ρ))

)
+βoV0 (ρ) − (1 +βo)V0 (0)

= w (xico,1 (ρ) ,π∗ (xico,1 (ρ))) +βoV0 (0) − (1 +βo)V0 (0)

= w (xico,1 (ρ) ,π∗ (xico,1 (ρ))) −w (x0 (0) ,π∗ (x0 (0)))

where the first equality is the definition of∆V1, the second uses the binding incentive con-
straint, and the last line is just algebra. Comparing the two expressions above, it follows
that ∆V1 (ρ) > ∆V0 (ρ) if and only ifw (xico,1 (ρ) ,π∗ (xico,1 (ρ))) > w (x0 (ρ) ,π∗ (x0 (ρ))) or
equivalently

xico,1 (ρ) < x0 (ρ) .

From the proof of Proposition 2, we know that

xico,1 (0) = x0 (0)

and for some finiteM > 0,

−∞ = lim
ρ→0

∂xico,1 (ρ)

∂ρ
< −M < lim

ρ→0

∂x0 (ρ)

∂ρ
.
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Thus, by continuity, there must exists ρ̂ 6 ρ∗1 such that xico,1 (ρ) < x0 (ρ) and therefore
∆V1 (ρ) 6 ∆V0 (ρ) for all ρ 6 ρ̂.

Next, we show that for a generic horizon k + 1, if ∆Vk (ρ) > ∆Vk−1 (ρ) > ∆V0 (ρ),
xico,k (ρ) 6 xico,k−1 (ρ) 6 xico,1 (ρ), and it is optimal to pool for k,k− 1, ..., 1 for all ρ 6 ρ̂

then for k+ 1: i) it is not optimal to randomize, ii) it is optimal to pool, iii) ∆Vk+1 (ρ) >

∆Vk (ρ) and xico,k+1 (ρ) 6 xico,k (ρ).
To see that randomization is not optimal, we just have to follow the same steps in

Lemma 7, noting that if it is optimal to randomize then it is optimal to choose σ suffi-
ciently low so that ρ ′ (πc|πc,σ) > ρ∗2 to take advantage of the discontinuous jump in ∆Vk
at ρ∗2 and relax the incentive constraint. Using this, we have

[ρ+ (1 − ρ)σ]∆Vk

(
ρ

ρ+ (1 − ρ)σ

)
+ (1 − ρ) (1 − σ)∆Vk (0) (38)

= [ρ+ (1 − ρ)σ]

[
V0

(
ρ

ρ+ (1 − ρ)σ

)
− V0 (0)

]
+ (1 − ρ) (1 − σ) [V0 (0) − V0 (ρ)]

6 [ρ+ (1 − ρ)σ] [V0 (ρ) − V0 (0)]

6 [ρ+ (1 − ρ)σ] [Vk (ρ) − Vk (0)]

where the first equality follows from the fact that ρ/ [ρ+ (1 − ρ)σ] > ρ∗2 and the opti-
mality of separation with probability one for ρ > ρ∗2, the second inequality follows from
concavity of V0, and the last one from ∆Vk (ρ) > ∆V0 (ρ) for ρ ∈ [0, ρ̂]. Using (38) in the
expression (57) in Lemma 7 gives that randomization is not optimal.

Thus the only relevant options are pooling or separating with probability one. We can
just compare two values:

Wk+1 (ρ) = max
{
W
pool
k+1 (ρ) ,Wsep

k+1 (ρ)
}

(39)

where
W
sep
k+1 (ρ) =W0 (ρ) +β [ρWk (1) + (1 − ρ)Wk (0)] (40)

W
pool
k+1 (ρ) = w

(
xico,k+1 (ρ) ,φ−1 (xico,k (ρ))

)
+βWk (ρ) (41)

where
G (xico,k+1 (ρ)) = β∆Vk (ρ) (42)

To see that it is optimal to pool, note that by our induction hypothesis

G (xico,k (ρ)) = β∆Vk−1 (ρ)
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and ∆Vk−1 (ρ) 6 ∆Vk (ρ). Thus, since G is decreasing, it follows that

xico,k+1 (ρ) 6 xico,k (ρ) 6 xico,1 (ρ) . (43)

Thus,

W
pool
k+1 (ρ) −Wsep

k+1 (ρ) = w
(
xico,k+1,φ−1 (xico,k+1)

)
+βWpool

k (ρ)

−

{
W0 (ρ) +

β
(
1 −βk

)
1 −β

[ρW0 (1) + (1 − ρ)W0 (0)]

}
> w

(
xico,k+1,φ−1 (xico,k+1)

)
+β

{
W0 (ρ) +

β
(
1 −βk−1)
1 −β

[ρW0 (1) + (1 − ρ)W0 (0)]

}

−

{
W0 (ρ) +

β
(
1 −βk

)
1 −β

[ρW0 (1) + (1 − ρ)W0 (0)]

}
= w

(
xico,k+1,φ−1 (xico,k+1)

)
−W0 (ρ) +β [W0 (ρ) − ρW0 (1) + (1 − ρ)W0 (0)]

> w
(
xico,1,φ−1 (xico,1)

)
−W0 (ρ) +β [W0 (ρ) − ρW0 (1) + (1 − ρ)W0 (0)]

> 0

where the first equality just uses the definitions ofWpool
k+1 andWsep

k+1, the second inequality
follows fromW

pool
k >Wsep

k which follows from the induction hypothesis, the third equal-
ity follows from algebra, and the fourth inequality follows from (43), and the last one from
ρ 6 ρ̂ 6 ρ∗1 which implies that pooling is optimal in the twice repeated economy. Thus it
is optimal to pool.

That ∆Vk+1 (ρ) > ∆Vk (ρ) > ∆V0 (ρ) follows directly from (43).
We thus established that for ρ ∈ [0, ρ̂], for all k it is optimal to pool and {xk} =

{xico,k (ρ)} is a decreasing sequence in [π, π̄] thus it must converge and its limit is given
by xCK defined in the text. Q.E.D.

Note that if W0 (ρ) is concave then uncertainty is beneficial at any horizon k > 0,
in that Wk (ρ) > ρWk (1) + (1 − ρ)Wk (0) for all k as shown in Figure 6. This is true
despite the fact that for a general horizon k,Wk (ρ) is the upper envelope of two (concave)
functions,Wk (ρ) = max

{
W
pool
k (ρ) ,Wsep

k (ρ)
}

, and therefore it is not globally concave.

Lemma 4. IfWk (ρ) > ρWk (1)+(1 − ρ)Wk (0) thenWk+1 (ρ) > ρWk+1 (1)+(1 − ρ)Wk+1 (0).
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Figure 6: Equilibrium values: uncertainty is beneficial for k > 1

ρ
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Wk(1)

W sep
k (ρ)W pool
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Wk(ρ) = max{W pool
k (ρ),W sep

k (ρ)} > ρWk(1) + (1ρ)Wk(1)

Wk(0) Wk(0) = (1 + β + ...+ βk)W0(0)

Wk(1) = (1 + β + ...+ βk)W0(1)

Proof. Note that

Wk+1 (ρ) >W
sep
k+1 (ρ)

=W0 (ρ) +βρWk (1) +β (1 − ρ)Wk (0)

> [ρW0 (1) + (1 − ρ)W0 (0)] +βρWk (1) +β (1 − ρ)Wk (0)

= ρWk+1 (1) + (1 − ρ)Wk+1 (0)

where the first inequality follows from the definition of Wk+1 in (39), the second line fol-
lows from the definition ofWsep

k+1 (ρ) in (40), the third line follows from uncertainty being
beneficial in the static problem and the induction hypothesis, and the last line follows
from the fact that for ρ ∈ {0, 1},Wk (ρ) =Wk+1 (ρ) =W0 (ρ). Q.E.D.

The above lemma and the fact that W0 satisfies the property implies that for all k,
Wk (ρ) satisfies the above property.

A.5 Proof of Proposition 4

Consider first ρ ∈
[
0, ρ∗1

]
. From Proposition 2, we know that if signals are perfectly infor-

mative, it is optimal to be in the pooling regime so πo = πc. As we proved in the Lemma
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7, conditional on pooling, it is preferable to choose σε = 0 to relax the incentive constraint
(13).

Next, we show that pooling and σε = 0 is preferable to a separating outcome with σε >
0. Suppose not and let Wsep (σε > 0) be the value attained by separating and choosing
σε > 0. Consider a deviation with pooling and

xdev = φ (ρπc + (1 − ρ)πo) > xico,

πdevo = πdevc = πdev = ρπc + (1 − ρ)πo

where πc and πo are the policies associated with separation and σε > 0. Clearly, the
expected continuation value of separating and choosing σε > 0 is lower than the contin-
uation value of the proposed deviation, W0 (ρ), due to the concavity of W0 and the fact
that the posteriors are martingales. Lets compare the static values. By the concavity of w

ρw (x,πc) + (1 − ρ)w (x,πo) < w
(
xdev,πdev

)
so the static value is higher in the proposed deviation. We are thus left to check that the
deviation is incentive compatible or

w
(
xdev,πdev

)
+βoV0 (ρ) > w

(
xdev,π∗

)
+βoV0 (ρ)

⇐⇒ βo [V0 (ρ) − V0 (0)] > w
(
xdev,π∗

)
−w

(
xdev,πdev

)
= G

(
xdev

)
.

We have

βo [V0 (ρ) − V0 (0)] > w (xico,π∗ (xico)) −w (xico,πico)

= G (xico) > G
(
xdev

)
= w

(
xdev,π∗

)
−w

(
xdev,πdev

)
since xdev > xico and G is decreasing by Assumption 4. Thus the deviation is incentive
compatible and it attains a higher value than Wsep (σε > 0). Therefore, it is optimal to
pool and set σε = 0 for ρ ∈

[
0, ρ∗1

]
.

The argument for ρ ∈
[
ρ∗2, 1

]
is provided in the main text. Q.E.D.

A.6 Proof of Proposition 5

We start by proving that for ρ close to 1 it is optimal to have stochastic rules. Consider a
ρ close enough to 1 so that with a deterministic rule it is optimal to separate so π = π0 (ρ)
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. The value of this policy is

W = [ρw (x0,π0) + (1 − ρ)w (x0,π∗ (x0))] +β [ρW0 (1) + (1 − ρ)W0 (0)]

=W0 (ρ) +β [ρW0 (1) + (1 − ρ)W0 (0)]

We now show that if ρ is close to 1 then this policy is dominated by one that calls for the
commitment type to play the static best response with some positive probability. Consider
a deviation indexed by ε > 0 sufficiently small so that

πc =

π0 (ρ) with pr 1 − ε

1 with pr ε

so after observing a bailout the posterior is

ρ ′ =
ρε

ρε+ (1 − ρ)
=

ρ

ρ+ (1 − ρ) /ε
> 0

and after no-bailout ρ ′ = 1. The value of this deviation is then

Wdev (ε) = [ρ (1 − ε)w (x0 (ε) ,π0) + [ρε+ (1 − ρ)]w (x0 (ε) ,π∗ (x0))]

+β
[
ρ (1 − ε)W0 (1) + [ρε+ (1 − ρ)]W0

(
ρ ′
)]

SinceW =Wdev (0) we have

Wdev (ε) −Wdev (0) = ∆ω (ε) +β∆Ω (ε)

≈
[
∆ω ′ (ε) +β∆Ω ′ (ε)

]
ε

where
∆ω (ε) = [ρ (1 − ε)w (x0 (ε) ,π0) + [ρε+ (1 − ρ)]w (x0 (ε) ,π∗ (x0))]

∆Ω (ε) =
[
ρ (1 − ε)W0 (1) + [ρε+ (1 − ρ)]W0

(
ρ ′
)]

− [ρW0 (1) + (1 − ρ)W0 (0)]

Note that

∆Ω ′ (ε) = −ρW0 (1) + ρW0
(
ρ ′ (ε)

)
+ [ρε+ (1 − ρ)]W ′0

(
ρ ′ (ε)

) ∂ρ ′
∂ε

= −ρ
[
W0 (1) −W0

(
ρ ′ (ε)

)]
+ [ρε+ (1 − ρ)]W ′0

(
ρ ′ (ε)

) ∂ρ ′
∂ε

As ε→ 0
∆Ω ′ (ε)→ −ρ [W0 (1) −W0 (0)] + [(1 − ρ)]W ′0 (0)

∂ρ ′

∂ε
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∂ρ ′

∂ε
=
ρ [ρε+ (1 − ρ)] − ρερ

[ρε+ (1 − ρ)]2
→ ρ (1 − ρ)

(1 − ρ)2 =
ρ

(1 − ρ)

so for ρ close to one
lim
ρ→1

lim
ε→0

∆Ω ′ (ε) =∞
Thus to show that the deviation is profitable it is sufficient to show that ∆ω > −M for
someM sufficiently large. Consider

∆ω ′ (ε) = ρ [w (x0 (ε) ,π∗ (x0 (ε))) −w (x0 (ε) ,π0)]

+ {ρ (1 − ε)wx (x0 (ε) ,π0) + [ρε+ (1 − ρ)]wx (x0 (ε) ,π∗ (x0))}
∂x0 (ε)

∂ε

+ ρ (1 − ε)wπ (x0 (ε) ,π0)

where
∂x0 (ε)

∂ε
= φπρ (π

∗ − π0)

Since the first term in square brackets is positive we have that

∆ω ′ (ε) > {ρ (1 − ε)wx (x0 (ε) ,π0) + [ρε+ (1 − ρ)]wx (x0 (ε) ,π∗ (x0))}
∂x0 (ε)

∂ε

+ ρ (1 − ε)wπ (x0 (ε) ,π0)

= {ρwx (x0,π0) + (1 − ρ)wx (x0,π∗ (x0))}φπρ (π
∗ − π0) + ρwπ (x0,π0)

with wx and φπ bounded, as ρ→ 1 we have that the last expression converges to

wx (x0,π0)φπ (π
∗ − π0)+wπ (x0,π0) > wx (x0,π0)φπ (π

∗ − π0) > wx (x0,π0)φπ (π̄− π) > −M

for someM <∞.
(Notice that to derive this result we are not relying on the concavity ofW0 but only: i)

W ′0 > 0 and ii) properties of Bayes’ rule.)
We now prove that for ρ close to zero a deterministic rule is optimal. Since W0 is

concave and the posterior is a martingale,

ˆ
ρ ′ (π, ρ) [ρσc (π) + (1 − ρ)σo (π)]dπ = ρ,

then
W0 (ρ) >

ˆ
W0
(
ρ ′ (π, ρ)

)
[ρσc (π) + (1 − ρ)σo (π)]dπ.

Thus randomization can be optimal only if it improves that static outcome by reducing x.

54



Then it must be that

w (φ (πico) ,πico) <
ˆ
w (x,π) [ρσc (π) + (1 − ρ)σo (π)]dπ

where x is given by (16). A necessary condition is that

x < φ (πico) ⇐⇒ Eπ ≡
ˆ
π [ρσc (π) + (1 − ρ)σo (π)]dπ < πico

Thus, it is sufficient to show that Eπ > πico to prove our result. Suppose by way of
contradiction that it is not optimal to have πico with probability 1 so

ˆ
π [ρσc (π) + (1 − ρ)σo (π)]dπ < πico (44)

and since we consider ρ→ 0 then

Eoπ =

ˆ
πσo (π)dπ 6 πico (45)

otherwise we can make ρ arbitrary close to 0 so that the inequality in (44) is reversed.
From the incentive constraint, it must be that ∀π ∈ Suppσ0

w (x,π) +βV0
(
ρ ′ (π, ρ)

)
> w (x,π∗ (x)) +βV0

(
ρ ′ (π∗ (x) , ρ)

)
> w (x,π∗ (x)) +βV0 (0)

(46)
where the second inequality follows fromV0 being increasing in the posterior and ρ ′ (π∗ (x) , ρ) >
0. Note now that by properties of Bayes’ rule

ˆ
ρ ′ (π, ρ)σo (π)dπ =

ˆ
ρσc (π)

ρσc (π) + (1 − ρ)σo (π)
σo (π)dπ 6 ρ. (47)

Thus we have:
ˆ [

w (x,π) +βV0
(
ρ ′ (π, ρ)

)]
σo (π)dπ < w (x, Eoπ) +βV0

(
Eoρ

′) (48)

6 w (x, Eoπ) +βV0 (ρ)

= w (φ (Eoπ) , Eoπ) +βV0 (ρ)

where the first inequality follows from the strict concavity of w (in π) and V0, the second
inequality from (47) and V0 strictly increasing. Thus combining (46) and (48) we have that

w (φ (Eoπ) , Eoπ) +βV0 (ρ) > w (φ (Eoπ) ,π∗ (φ (Eoπ))) +βV0 (0)
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Since πico is the smallest solution to

w (φ (π) ,π) +βV0 (ρ) = w (φ (π) ,π∗ (π)) +βV0 (0)

then it follows that for ρ close to zero

πico (ρ) < Eoπ

a contradiction. Q.E.D.

A.7 Proof of Proposition 7

Suppose by way of contradiction that pooling is optimal so πo = πc. Consider a deviation
that leaves x,πo, and Vo (πo) constant and set πc = arg maxπc w (x,πc) and Vo (πc) =

arg maxV W̄0 (V , 1). Note that this deviation is feasible and attains a higher current value.
Next we show that the expected continuation value is also higher. Under the conjectured
optimum, the rule designer’s expected continuation value is

W̄0 (Vo, ρ) = max
x,πc,πo

ρw (x,πc) + (1 − ρ)w (x,πo)

subject to

w (x,πo) > w (x,π) ∀π,

w (x,πo) = Vo.

Under our proposed deviation, the rule designer’s expected continuation value is

ρW0 (1) + (1 − ρ) W̄0 (Vc, 0) = max
xc,xo,πc,πo

ρw (xc,πc) + (1 − ρ)w (xo,πo)

subject to

w (x,πo) > w (x,π) ∀π,

w (x,πo) = Vo.

Therefore
W̄0 (Vc, ρ) 6 ρW0 (1) + (1 − ρ) W̄0 (Vc, 0)

since the set of feasible outcomes in the first problem is a subset of the second because the
former has the implicit additional constraint that xc = xo = x. Q.E.D.
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B Example where uncertainty is not beneficial

FDI example Consider an economy populated by workers and foreign investors. Work-
ers inelastically supply one unit of labor and have preferences over consumption given
by v (c). Investors are risk neutral and have a large endowment e that can be either con-
sumed or invested. Let k be the amount invested. Output is produced by competitive
firms with a production function y = kαl1−α for α ∈ (0, 1). The government cares about
the welfare of the workers and can tax the investors’ capital income and lump-sum rebate
the proceeds to the workers. Let π be the tax rate. The government’s preferences are

w (k,π) = ω (k) + πR (k) k

where ω (k) = (1 −α) kα and R (k) = αkα−1 are the competitive factor prices. The prob-
lem for an individual investor i is

max
ki
u (ki,k,π) = max

ki
e− ki + (1 − π)R (k) ki

Optimality and representativeness imply that in equilibrium

k (π) = φ (π) = α1/(1−α) (1 − π)1/(1−α) . (49)

It is easy to show that π∗ (k) = 1 for all k and in all computed examples πc (ρ) = 0 for all
ρ.

From (49), it follows that k (π) is convex in π as

k ′′ (π) = α1/(1−α) α

1 −α

1
1 −α

(1 − π)
α

1−α−1 > 0

as shown in the first panel of Figure 7. That is, when (expected) taxes are high a reduc-
tion in taxes results in a smaller increase in investment than when taxes are low. This is
because the equilibrium interest rate is more sensitive when taxes are high and thus the
effect of the tax reduction on investment is mitigated by the steep reduction in the interest
rate. Thus, the complementarity between taxes and investment is lower when taxes are
high (far away from the Ramsey policy).

The failure of having a concave φ is not enough to rule out the concavity of W0 (ρ)

on its own. As we show in the fourth panel of Figure 7, if α is large enough so that
preferences w (k,π) are close enough to be linear then W0 (ρ) is convex for low levels of
reputation but as we increase the concavity of w by reducing α then W0 (ρ) is globally
concave.
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Figure 7: Static value and private action for the FDI example
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This example illustrates that whether W0 is concave depends on how private agents
respond to changes in expected policy. Intuitively, if private agents are cautious in that
they need the policy to be sufficiently close to the Ramsey policy for them to take the
good action then the complementarities between x and π are increasing in the level of
reputation and W0 may not be globally concave. Conversely, if agents are bold and a
small change in the policy induces them to take an action close to the Ramsey policy
when reputation is large then the complementarities between x and π are decreasing in
the level of reputation, which helps generate a globally concaveW0.
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C Problem (9) characterizes best outcome

In this section we show that the solution to problem (9) is the best Perfect Bayesian Equi-
librium (PBE) outcome of the policy game described in the text. We will do this in two
steps. First, we will show that the best PBE is the solution to a maximization problem
similar to (9) that allows for randomization by the optimizing type. Second, we show
that it is never optimal for the optimizing type to randomize and thus the problem in the
first part reduces to (9) in the text.

C.1 Perfect Bayesian Equilibrium Outcome

We now define a PBE for the policy game. Let the horizon for the economy be K > 1
and let t = 0, 1, ...,K− 1. (Note that there is an inverse relationship between periods and
horizon so t = K− k. Here strategies and equilibrium objects will be indexed by t while
in the text we go backward and index equilibrium objects by the residual horizon as it is
more convenient.)

Let htr = (πr0, x0,π0, ...,πrt−1, xt−1,πt−1) ∈ Htr be the history faced by the rule designer,
htx =

(
htr,πrt

)
∈ Htx be the history faced by the private agents, and let hto =

(
htx, xt

)
∈ Hto

be the history faced by the optimizing type. A strategy for the rule designer is σr = {σrt}

where σrt : Htr → [π, π̄], an allocation rule for the private agents is σx = {σxt} where
σxt : Htx → X, and a strategy for the optimizing type is σo = {σot} where σot : Hto →
∆ ([π, π̄]) and ∆ ([π, π̄]) is the space of probability measures over [π, π̄]. Beliefs are denoted
by, ρ = {ρt+1}, where ρt : Htr → [0, 1].

Definition. Strategies (σr,σx,σo) and beliefs ρ are a Perfect Bayesian Equilibrium (PBE)
if:

1. For all histories htr, the rule designer’s strategy is optimal i.e. it maximizes the rule
designer’s expected payoff given ρ and (σo,σx);

2. For all histories hto, the optimizing type’s strategy is optimal i.e. it maximizes the
optimizing type’s expected payoff given ρ and (σr,σx);

3. The private agent’s allocation rule satisfies

σx
(
htr,πrt

)
= φ

(
ρt
(
htr
)
πrt +

(
1 − ρt

(
htr
))ˆ

πσo
(
π|hto

)
dπ

)
where σot

(
πt|h

t
o

)
is the probability that σot assigns to πt after history hto is reached;
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4. Beliefs are updated using Bayes’ rule wherever applicable, i.e. for all htx along the
equilibrium path,

ρt+1

(
ht+1
r

)
=

ρt
(
htr
)

I{πt=πrt}

ρt (htr) I{πt=πrt} + (1 − ρt (htr))σot (πt|h
t
o)

.

We next show that the problem below characterizes the best PBE:

Wk+1 (ρ) = max
πc,x,σ∈[0,1]

(ρ+ (1 − ρ)σ)

[
w (x,πc) +βWk

(
ρ

ρ+ (1 − ρ)σ

)]
(50)

+ (1 − ρ) (1 − σ) [w (x,π∗ (x)) +βWk (0)]

subject to the implementability condition,

x = φ ((ρ+ (1 − ρ)σ)πc + (1 − ρ) (1 − σ)π∗ (x)) , (51)

and the incentive compatibility constraint for the optimizing type,

σ

[
w (x,πc) +βoVk

(
ρ

ρ+ (1 − ρ)σ

)
− [w (x,π∗ (x)) +βoVk (0)]

]
= 0. (52)

The value for the optimizing type for a generic horizon k+ 1 is

Vk+1 (ρ) = σk (ρ)

[
w (xk+1 (ρ) ,πc,k+1 (ρ)) +βoVk

(
ρ

ρ+ (1 − ρ)σ

)]
+ (1 − σk (ρ)) [w (xk+1 (ρ) ,π∗ (xk+1 (ρ))) +βoVk (0)] .

We prove the following result for the two period model but the logic can be extended
inductively to arbitrary horizons.

Lemma 5. The best PBE outcome solves the problem in (50).

Proof. First, note that the solution to (50) can be supported as a PBE. Denote this
solution with a hat. In period t = 0, let the support of the optimizing type’s strat-
egy be {πrt,π∗ (xt)}. In particular, if w (x0,πr0) + βoV0 (ρ) > w (x0,π∗ (x0)) + βoV0 (0)
set σo0

(
πr0|h

0
o

)
= 1. If instead w (x0,πr0) + βoV0 (1) < w (x0,π∗ (x0)) + βoV0 (0), set

σo0
(
πr0|h

0
o

)
= 0. If none of these two conditions are satisfied, let σo0

(
πr0|h

0
o

)
= σ̃ where

σ̃ solves
w (x0,πr0) +βoV0

(
ρ

ρ+ (1 − ρ) σ̃

)
= w (x0,π∗ (x0)) +βoV0 (0) .

In period 1, let σo1
(
h1
o

)
= π∗ (x1) for all ρ and x1.
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Let the evolution of beliefs be

ρ1

(
h1
r

)
=


ρ

ρ+(1−ρ)σo0(πr0|h0
o)

if π0 = πr0

0 otherwise

The strategy for the rule designer is

σr0 = π̂c1

and

σr1

(
h1
r

)
=


πc0 (ρ) if π0 = πr0 and σ = 1

πc0 (1) if π0 = πr0 and σ = 0

πc0 (0) if π0 6= πr0

where πc0 (ρ) is defined in the text. Finally, let σxt
(
htx
)
= xt where xt solves

xt = φ
([
ρt
(
htr
)
+
(
1 − ρt

(
htr
))
σot
(
πrt|πoth

t
o

)]
πrt +

(
1 − ρt

(
htr
)) (

1 − σot
(
πrt|πoth

t
o

))
π∗ (xt)

)
.

Clearly (σr,σx,σo, ρ) constitutes a PBE that supports the outcome which solves (50).
Next, we show that no other PBE outcome can attain a higher value. Consider an

arbitrary PBE. First, note that in the last period, given the prior ρ, there is a unique equi-
librium outcome determined by the solution to problem (3). Thus, the continuation value
for the rule designer and the optimizing type areW0 (ρ) and V0 (ρ) respectively.

Consider now the first period. We argue that the support of the optimal strategy for
the optimizing type can contain only two possible elements: the rule and the best re-
sponse to xt. Suppose by way of contradiction that the optimizing type assigns proba-
bility to πt 6= {πrt,π∗ (xt)}. Since this is on path it must be that ρt+1 = 0 so the value is
w (xt,πt) + βoV0 (0) < w (xt,π∗ (xt)) + βoV0 (0). Thus it is better off choosing its static
best response, a contradiction. The optimizing type’s strategy can then be described by
the probability of following the rule which we will denote by σ (with a slight abuse of no-
tation). This immediately implies that the implementability constraint (51) must also be
satisfied in any PBE outcome. There are three possible cases that can arise in equilibrium.

First, suppose that σ ∈ (0, 1). Since the optimizing type must be indifferent between
following the rule and playing the static best response to x0, it must be that

w (x0,πr) +βoV0

(
ρ

ρ+ (1 − ρ)σ

)
= w (x0,π∗ (x0)) +βoV0 (0)

or
σ

[
w (x0,πr) +βoV0

(
ρ

ρ+ (1 − ρ)σ

)
− [w (x0,π∗ (x0)) +βoV0 (0)]

]
= 0
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Thus, the equilibrium outcome must satisfy all the constraints in (50). Hence W1 (ρ) is
(weakly) greater than the expected payoff of this PBE.

Second, suppose that σ = 0. This implies that

σ

[
w (x0,πr) +βoV0

(
ρ

ρ+ (1 − ρ)σ

)
− [w (x0,π∗ (x0)) +βoV0 (0)]

]
= 0

Thus, the equilibrium must satisfy all the constraints in (50). Hence W1 (ρ) is (weakly)
greater than the expected payoff of this PBE.

Finally, suppose σ = 1. Since the optimizing type always has the option to play the
static best response to x0, optimality requires

w (x0,πr) +βoV0 (ρ) > w (x0,π∗ (x0)) +βoV0 (ρ1 (π
∗ (x0) |πr0, x0)) (53)

where ρ1 (π
∗ (x0) |πr0, x0) > 0 is the posterior if the optimizing type deviates and x0 =

φ (πr0). Since σ = 1, a deviation only happens off-path and thus Bayes’ rule does not pin
down the posterior after a deviation. If ρ1 (π

∗ (x0) |πr0, x0) = 0 and (53) holds with equal-
ity then this PBE satisfies (52) and therefore it cannot attain a higher value then W1 (ρ).
Suppose now that either ρ1 (π

∗ (x0) |πr0, x0) > 0 or (53) holds with a strict inequality so

w (φ (πr0) ,πr0) +βoV0 (ρ) > w (φ (πr0) ,π∗ (φ (πr0))) +βoV0 (0) (54)

since V0 is strictly decreasing. Next we show that in this case there is an outcome feasible
in (50) that attains a higher value. In particular, the rule designer can then reduce πr0 by
ε > 0 until the constraint holds with equality,

w (φ (πr0 − ε) ,πr0 − ε) +βoV0 (ρ) = [w (φ (πr0 − ε) ,π∗ (x0 − ε)) +βoV0 (0)] .

Since the solution must be bounded away from the Ramsey outcome because of Assump-
tion 3, this perturbation increases welfare and it is feasible in (50).

Thus the solution to the problem in (50) is the PBE outcome that attains the highest
value. Q.E.D.

C.2 Optimizing type does not randomize

We now show that under our assumptions it is without loss of generality to consider the
case in which the optimizing type either follows the rule with probability one or chooses
its best response and deviates from the rule with probability one.

To see this, note that we can write problem (50) where we allow the optimizing type
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to randomize as
W1 (ρ) = max

{
max
σ∈[0,1]

Wpool (σ, ρ) ,Wsep (ρ)

}
where Wsep (ρ) is the value of separation – defined in the text – and Wpool (σ, ρ) is the
value the rule designer can attain by inducing the optimizing type to follow the rule with
probability σ starting with a prior ρ is

Wpool (σ, ρ) = [ρ+ (1 − ρ)σ]
[
w (xico (σ, ρ) ,πico (σ, ρ)) +βW0

(
ρ ′ (ρ,σ)

)]
+ (1 − ρ) (1 − σ) [w (xico (σ, ρ) ,π∗ (xico (σ, ρ))) +βW0 (0)]

where the evolution of the prior is given by

ρ ′ (σ, ρ) =
ρ

ρ+ (1 − ρ)σ

and (xico (σ, ρ) ,πico (σ, ρ)) solves

xico (σ, ρ) = φ ([ρ+ (1 − ρ)σ]πico (σ, ρ) + (1 − ρ) (1 − σ)π∗ (xico (σ, ρ)))

and

w (xico (σ, ρ) ,πico (σ, ρ)) +βV0
(
ρ ′ (ρ,σ)

)
= w (xico (σ, ρ) ,π∗ (xico (σ, ρ))) +βV0 (0) .

That is, πico (σ, ρ) is the most stringent policy that is incentive compatible for the optimiz-
ing type given ρ and σ.

We next show that Wpool (1, ρ) > Wpool (σ, ρ) thus it is optimal to choose σ ∈ {0, 1}.
We will use the following intermediate result:

Lemma 6. Under Assumptions 1 and 2, V0 (ρ) is concave.

Proof. We prove this for the case with wx < 0. The proof for the other case is identical.
Recall that

V0 (ρ) = w (x (ρ) ,π∗ (x (ρ)))

Then

V ′0 (ρ) = wxx
′ (ρ) +wππ∗x (x) x

′ (ρ)

= wxx
′ (ρ)
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where we used that wπ (x,π∗ (x)) = 0. Then

V ′′ (ρ) = (wxx +wxππ
∗
x) x

′ (ρ)2 +wxx
′′ (ρ)

=

(
wxxwππ (x,π∗) −wxπ (x,π∗)2

wππ (x,πo)

)
x ′ (ρ)2 +wxx

′′ (ρ)

< 0

where the second line follows from using (21) to substitute for π∗x and the last inequality
follows from Assumption 2 and x ′′ (ρ) > 0 where the latter property was established in
the proof of Proposition 1. Q.E.D.

Lemma 7. Under Assumptions 1 and 2, for all ρ and σ,Wpool (1, ρ) >Wpool (σ, ρ).

Proof. Consider σ < 1. Consider a deviation in which the optimizing type chooses the
following policy

πdev = [ρ+ (1 − ρ)σ]πico (σ, ρ) + (1 − ρ) (1 − σ)π∗ (xico (σ, ρ))

with probability one and πc = πdev. Note that this policy is just the expected value of the
policies. Therefore, under this deviation, xdev = xico (σ, ρ). Since w is concave in π and
W0 is concave in ρ, this policy improves welfare:

Wpool (σ, ρ) = [ρ+ (1 − ρ)σ]w (xico (σ, ρ) ,πico (σ, ρ)) + (1 − ρ) (1 − σ)w (xico (σ, ρ) ,π∗ (xico (σ, ρ)))

+ [ρ+ (1 − ρ)σ]βW0
(
ρ ′ (ρ,σ)

)
+ (1 − ρ) (1 − σ)βW0 (0)

6 w (xico (σ, ρ) , [ρ+ (1 − ρ)σ]πico (σ, ρ) + (1 − ρ) (1 − σ)π∗ (xico (σ, ρ))) +βW0 (ρ)

= w (xico (σ, ρ) ,πdev) +βW0 (ρ)

We are left to show that this deviation is feasible for the rule designer in that it satisfies
the incentive compatibility constraint for the optimizing type:

w (xico (σ, ρ) ,πdev) +βV0 (ρ) > w (xico (σ, ρ) ,π∗ (xico (σ, ρ))) +βV0 (0)

Note that at the original allocation it must be that

w (xico (σ, ρ) ,πico (σ, ρ)) +βV0
(
ρ ′ (ρ,σ)

)
> w (xico (σ, ρ) ,π∗ (xico (σ, ρ))) +βV0 (0) (55)

and trivially

w (xico (σ, ρ) ,π∗ (xico (σ, ρ))) +βV0 (0) > w (xico (σ, ρ) ,π∗ (xico (σ, ρ))) +βV0 (0) . (56)
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Multiplying the left and right side of (55) by [ρ+ (1 − ρ)σ], the left and right side of (56)
by (1 − ρ) (1 − σ), and summing up the two resulting equations yields

w (xico (σ, ρ) ,π∗ (xico (σ, ρ))) +βV0 (0) (57)

6 [ρ+ (1 − ρ)σ]
[
w (xico (σ, ρ) ,πico (σ, ρ)) +βV0

(
ρ ′ (ρ,σ)

)]
+ (1 − ρ) (1 − σ) [w (xico (σ, ρ) ,π∗ (xico (σ, ρ))) +βV0 (0)]

6 w (xico (σ, ρ) ,πdev) +βV0 (ρ)

where the second inequality follows from concavity of w in π and V0 in ρ. Thus the
proposed deviation is incentive compatible and it increases welfare. Moreover, since

Wpool (1, ρ) = max
πc

w (φ (πc) ,πc) +βW0 (ρ)

subject to
w (φ (πc) ,πc) +βV0 (ρ) > w (φ (πc) ,π∗ (φ (πc))) +βV0 (0)

and since πdev is feasible for this problem we have

Wpool (1, ρ) > w (xico (σ, ρ) ,πdev) +βW0 (ρ) >Wpool (σ, ρ)

as wanted. Q.E.D.
This lemma immediately implies that

W1 (ρ) = max
{
Wpool (1, ρ) ,Wsep (ρ)

}
= max

{
Wpool (ρ) ,Wsep (ρ)

}
as defined in the text.

D Proof of Proposition 2 for the Barro-Gordon example

Consider the Barro-Gordon example with

φ (ρπc + (1 − ρ)πo) = ρπc + (1 − ρ)πo

and
w (x,π) = −

1
2

[
(ψ+ x− π)2 + π2

]
.

Therefore,
wπ = − [− (ψ+ x) + 2π] ,

wx = −(ψ+ x− π) .
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Moreover, the static best response is

π∗ (x) =
(ψ+ x)

2
.

Consider first the static problem:

W0 (ρ) = max
πc,πo,x

−ρ
1
2

[
(ψ+ x− πc)

2 + π2
c

]
− (1 − ρ)

1
2

[
(ψ+ x− πo)

2 + π2
o

]
subject to

x = ρπc + (1 − ρ)πo,

πo =
(ψ+ x)

2
.

Combining the two constraints we can express πo and x in terms of πc as

πo =
ψ+ ρπc
(1 + ρ)

=
ρ

1 + ρ
πc +

ψ

(1 + ρ)

and
x =

2ρ
1 + ρ

πc +
(1 − ρ)

(1 + ρ)
ψ.

Therefore, substituting into the objective function we obtain

W0 (ρ) = max−
1
2

(
ρ

[(
ψ+

2ρ
1 + ρ

πc +
(1 − ρ)

(1 + ρ)
ψ− πc

)2

+ π2
c

]

+(1 − ρ)

[(
ψ+

2ρ
1 + ρ

πc +
(1 − ρ)

(1 + ρ)
ψ−

ρ

1 + ρ
πc −

ψ

(1 + ρ)

)2

+

(
ρ

1 + ρ
πc +

ψ

(1 + ρ)

)2
])

= max
πc

−
1
2

(
ρ

[(
2

(1 + ρ)
ψ−

(
1 − ρ

1 + ρ

)
πc

)2

+ π2
c

]
+ (1 − ρ)

[
2
(

ψ

(1 + ρ)
+

ρ

1 + ρ
πc

)2
])

.

The first order condition for the above problem is

0 =

[
−

((
1 − ρ

1 + ρ

)
4ρ

(1 + ρ)
ψ− ρ

(
1 − ρ

1 + ρ

)
2
(

1 − ρ

1 + ρ

)
πc

)
+ 2ρπc

]
+

[
4
ρ (1 − ρ)

1 + ρ

(
ψ

(1 + ρ)
+

ρ

1 + ρ
πc

)]
which implies that

πc = 0

Therefore
πo (ρ) =

ψ

(1 + ρ)
,
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x (ρ) =
(1 − ρ)

(1 + ρ)
ψ

and

W0 (ρ) = −
ψ2

(1 + ρ)
.

Also it is worth noting that

W ′′0 (ρ) = −2
ψ2

(1 + ρ)
< 0

and soW0 is concave.
Consider now the two-period problem. Let the value for the optimizing type in the

terminal period be

V (ρ) = −
1
2

[
(ψ+ x (ρ) − π∗)2 + (π∗ (x (ρ)))2

]
= −

(
ψ

(1 + ρ)

)2

.

Lets consider the pooling case first. The optimal rule solves

Wpool (ρ) = max
π,x

−
1
2

[
(ψ+ x− π)2 + π2

]
+βW0 (ρ)

subject to
x = π

−
1
2

[
(ψ+ x− π)2 + π2

]
+βoV (ρ) > −

1
2

[
(ψ+ x− π∗ (x))2 + π∗ (x)2

]
+βoV (0)

or
Wpool (ρ) = max

π
−

1
2

[
ψ2 + π2

]
+βW0 (ρ)

subject to

−
1
2

[
ψ2 + π2

]
−βo

(
ψ

(1 + ρ)

)2

= −
(ψ+ π)

4

2
−βoψ

2.

Thus the solution is pinned down by the last constraint. Solving for πwe have

πico (ρ) = ψ

1 −

√√√√4βo

[
1 −

(
1

(1 + ρ)

)2
]

(Note that πico (0) = ψ = πo (0) and πico (1) = ψ
(
1 −
√

3βo
)

so it must be that βo < 1/3.)
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So the payoff from pooling is

Wpool (ρ) = −ψ2

1
2

1 +

1 −

√√√√4βo

[
1 −

(
1

(1 + ρ)

)2
]2+β

1
(1 + ρ)

 .

The value of separation is

Wsep (ρ) =W0 (ρ) +β [ρW0 (1) + (1 − ρ)W0 (0)]

= −ψ2
[

1
(1 + ρ)

+β
[
1 −

ρ

2

]]
.

Let’s consider

∆ (ρ) ≡Wpool (ρ) −Wsep (ρ)

= ψ2

−

1
2

1 +

1 −

√√√√4βo

[
1 −

(
1

(1 + ρ)

)2
]2+β

1
(1 + ρ)


+

[
1

(1 + ρ)
+β

[
1 −

ρ

2

]])
= ψ2

([
1

(1 + ρ)
−

1
2
[1 + z (ρ)]

]
+β

[
1 −

ρ

2
−

1
1 + ρ

])
where

z (ρ) ≡

1 −

√√√√4βo

[
1 −

(
1

(1 + ρ)

)2
]2

=

(
1 −

2ξ
(1 + ρ)

√[
(1 + ρ)2 − 1

])2

< 1

and
ξ ≡

√
βo.

At ρ = 0, ∆ (0) = 0, while at ρ = 1,

∆ (1) = ψ2


−1

2

1 −

√√√√4βo

[
1 −

(
1
2

)2
]2

 < 0.

Next, let’s look at the slope

∆ ′ (ρ) =ψ2

([
−

1
(1 + ρ)2 −

1
2
z ′ (ρ)

]
+β

[
−

1
2
+

1
(1 + ρ)2

])
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z ′ (ρ) = −

(
8βo

1
(1 + ρ)3

)(4βo

[
1 −

(
1

(1 + ρ)

)2
])− 1

2

− 1

 (58)

Notice that as ρ→ 0, z ′ (ρ) goes to −∞. Therefore the slope of ∆ (ρ) at ρ = 0 is

ψ2
([

−1 −
1
2
z ′ (ρ)

]
+
β

2

)
→∞

so that near 0 there exists a region of pooling.
In general to get pooling we need

β >

[
− 1

(1+ρ) +
1
2 [1 + z (ρ)]

]
[
1 − ρ

2 − 1
1+ρ

] .

Let

F (ρ) ≡

[
− 1

(1+ρ) +
1
2 [1 + z (ρ)]

]
[
1 − ρ

2 − 1
1+ρ

] (59)

We know that limρ→0 F (ρ) = −∞ and limρ→1 F (ρ) =∞. In fact, we have

F (0) =
0
0

Thus, by the L’Hôpital’s rule we have

lim
ρ→0

F (0) = lim
ρ→0

[
1 + 1

2z
′ (0)

]
1
2

= −∞
and

F (1) =

[
−1

2 +
1
2 [1 + z (1)]

][1
2 −

1
2

] =∞
We next show that F (ρ) is monotone increasing in ρ so that there exists a cutoff ρ∗ such
that it is optimal to pool for ρ < ρ∗ and it is optimal to separate for ρ > ρ∗. To this end,
note that we can rearrange (59) as

F (ρ) =
−2 + (1 + ρ) [1 + z (ρ)]

ρ (1 − ρ)
.

So

F ′ (ρ) =
ρ (1 − ρ) [(1 + ρ) z ′ (ρ) + 1 + z (ρ)] − [−2 + (1 + ρ) [1 + z (ρ)]] [1 − 2ρ]

ρ2 (1 − ρ)2 . (60)
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The denominator is positive and so we just need to sign the numerator in order to sign
F ′ (ρ).

Lets do some preliminary calculations. We have that

√
z (ρ) = 1 − 2ξ

√[
(1 + ρ)2 − 1

]
(1 + ρ)

and
2ξ

(1 + ρ)
=

1 −
√
z (ρ)√[

(1 + ρ)2 − 1
] . (61)

Therefore, after some algebraic manipulations, we can rewrite (58) as

z ′ (ρ) = −

(
8βo

1
(1 + ρ)3

)(4βo

[
1 −

(
1

(1 + ρ)

)2
])− 1

2

− 1

 (62)

= −

(
2

(1 + ρ)

(
2ξ

(1 + ρ)

)2
) 1

2ξ

√
[(1+ρ)2−1]
(1+ρ)

− 1


= −

2
(1 + ρ)

(√
z (ρ) − z (ρ)

)
ρ (2 + ρ)

where in the third line we used (61).
Next, let’s consider the numerator of F ′ (ρ) in (60):

h (ρ) ≡ ρ (1 − ρ)
[
(1 + ρ) z ′ (ρ) + 1 + z (ρ)

]
− [−2 + (1 + ρ) [1 + z (ρ)]] [1 − 2ρ]

= (1 − ρ)

[
−2
√
z (ρ) + (2 + ρ (2 + ρ)) z (ρ) + ρ (2 + ρ)

(2 + ρ)

]
− {−2 [1 − 2ρ] + (1 + ρ) [1 − 2ρ] + (1 + ρ) [1 − 2ρ] z (ρ)}

=

[
−2 (1 − ρ)

√
z (ρ) +

[
ρ+ 4ρ2 + ρ3] z (ρ) + (2 + ρ) (1 − ρ)2

(2 + ρ)

]

>

[
−2 (1 − ρ)

√
z (ρ) +

[
ρ+ 4ρ2] z (ρ) + (2 + ρ) (1 − ρ)2

(2 + ρ)

]

=

(1 − ρ)
[
(2 + ρ) (1 − ρ) − 2

√
z (ρ)

]
+
[
ρ+ 4ρ2] z (ρ)

(2 + ρ)


where to obtain the second equality we used (62), the third equality follows from algebra,
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the inequality follows from ρ3z (ρ) > 0, and the last equality also follows from algebra.
Notice that if

[
(2 + ρ) (1 − ρ) − 2

√
z (ρ)

]
> 0 then h (ρ) > 0 and the result is proved.

Suppose not, i.e.

(1 − ρ) <
2
√
z (ρ)

(2 + ρ)
(63)

We can then write

h (ρ) >

(1 − ρ)
[
(2 + ρ) (1 − ρ) − 2

√
z (ρ)

]
+
[
ρ+ 4ρ2] z (ρ)

(2 + ρ)


>

 2
√
z(ρ)

(2+ρ)

[
(2 + ρ) (1 − ρ) − 2

√
z (ρ)

]
+
[
ρ+ 4ρ2] z (ρ)

(2 + ρ)


=

2 (1 − ρ)
√
z (ρ) − z (ρ)

[
4

(2+ρ) − ρ− 4ρ2
]

(2 + ρ)


>

z (ρ)

(2 + ρ)

[
2 (1 − ρ) −

[
4

(2 + ρ)
− ρ− 4ρ2

]]
where the second line follows from (63), the third is algebra, and the fourth line follows
from

√
z (ρ) > z (ρ) since z (ρ) < 1. We next show that 2 (1 − ρ) >

[
4

(2+ρ) − ρ− 4ρ2
]
. To

see this, suppose it is not true. Then

2 (1 − ρ) −

[
4

(2 + ρ)
− ρ− 4ρ2

]
< 0

or
4ρ2 (2 + ρ) − ρ2 < 0

which is a contradiction. Therefore h (ρ) > 0 and so F ′ (ρ) > 0. Q.E.D.

E Optimal rules when the rule designer can commit

In our baseline model, we assumed that the rule designer chooses the optimal rule in
each period without commitment. We now study the problem for a rule designer who
can choose rules for all subsequent periods in period zero and commit to them. First, we
show that in the twice repeated economy, the solution with and without commitment on
the part of the rule designer coincides. With more than two periods, whether these two
values coincide depends on the level of reputation. In particular, for reputation values
that are either sufficiently high or low, the commitment and no-commitment outcomes
coincide and so our main results extend to the setting where the rule designer has com-
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mitment. However, for an intermediate range of priors, the solution to this problem dif-
fers from the case in which rules are chosen sequentially: the rule designer itself suffers
from a time inconsistency problem. This is because future rules can be used to incen-
tivize the policy maker in the current period, thereby relaxing the incentive compatibility
constraint. We illustrate this point in the simplest possible way by considering a thrice
repeated economy.

Setup and preliminaries For a generic horizon k, we can write the rule designer’s
problem in a recursive fashion by ensuring that the continuation value delivers a given
promised value to the optimizing type given the prior ρ.

To set up the problem, let Vk+1 (ρ) be the set of feasible promised values for the op-
timizing type. Note that whenever ρ = 0, Vk (ρ) = {Vk (0)} for all k because πr does not
affect the equilibrium outcome which is given by x = φ (π∗ (x)) and πo = π∗ (x). This
observation implies that the worst punishment that the rule designer can impose on a de-
viating optimizing type is Vk (0) because after a deviation private agents learn that they
are facing the optimizing type. Thus, for k > 1 we can write

Vk (ρ) = {V : ∃
(
x,πr,σ,V ′, ρ ′

)
such that

V = σ
[
w (x,πr) +βoV ′

]
+ (1 − σ) [w (x,π∗ (x)) +βoVk (0)]

x = φ ((ρ+ σ (1 − ρ))πr + (1 − σ) (1 − ρ)π∗ (x))

0 = σ
{
w (x,πr) +βoV ′ − [w (x,π∗ (x)) +βoVk (0)]

}
if σ < 1

w (x,πr) +βoV ′ > w (x,π∗ (x)) +βoVk (0) if σ = 1

ρ ′ =
ρ

ρ+ (1 − ρ)σ

V ′ ∈ Vk−1
(
ρ ′
)
}

and

V0 (ρ) = {V : ∃ (x,πc) such that V = w (x,π∗ (x)) and x = φ (ρπc + (1 − ρ)π∗ (x)) } .

In setting up these values we used the fact that after any deviation the policy maker’s
continuation value is Vk (0) defined in the text.

The problem of the rule designer with horizon k > 1 given promised value V and
prior ρ is

W̄k (V , ρ) = max
x,πr,σ,V ′,ρ ′

(ρ+ σ (1 − ρ))
[
w (x,πr) +βW̄k−1

(
V ′, ρ ′

)]
(64)

+ (1 − σ) (1 − ρ) [w (x,π∗ (x)) +βWk−1 (0)]
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subject to

V =σ
[
w (x,πr) +βoV ′

]
+ (1 − σ) [w (x,π∗ (x)) +βoVk−1 (0)]

x =φ ((ρ+ σ (1 − ρ))πr + (1 − σ) (1 − ρ)π∗ (x))

0 =σ
[
w (x,πr) +βoV ′ − (w (x,π∗ (x)) +βoVk−1 (0))

]
ρ ′ =

ρ

ρ+ (1 − ρ)σ

V ′ ∈Vk−1
(
ρ ′
)

where we used the fact that after a deviation by the optimizing type the value for the
policy maker is Wk−1 (0) = W̄k−1 (Vk−1 (0) , 0). (Note that at an optimum, even if σ = 1,
the incentive constraint will be binding so it is without loss of generality to write the
incentive constraint as an equality.)

The problem in the first period is the same without the promise keeping constraint or

W̄K (ρ) = max
V∈VK(ρ)

W̄K (V , ρ) .

E.1 Two period problem

Proposition 8. In the twice repeated economy, the solution with and without commitment on the
part of the rule designer coincides.

Proof. First, note that there is no disagreement between the rule designer and the
optimizing type policy maker in the choice of the policy rule in a static setting. That is,
both the rule designer’s and policy maker’s continuation values are maximized by setting
πc = π in the terminal period, or:

max
V∈V0(ρ)

V = V0 (ρ) (65)

and
max
V∈V0(ρ)

W̄0 (V , ρ) = W̄ (V0 (ρ) , ρ) =W0 (ρ) . (66)

Condition (66) follows because w (x,π∗ (x)) is decreasing in x thus choosing πc = π max-
imizes both the value of the rule designer and the optimizing type.19 Condition (65)
follows from Proposition 1 that characterizes the relaxed problem without the promise
keeping constraint. Thus, promising V0 (ρ) maximizes the continuation value and at the
same time relaxes the IC in the first period. Thus, the problem in (64) for k = 1 dropping

19Note that this is no longer true if there are more than two periods.
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the promise keeping constraint (since there are no promises in the first period) reduces to

W̄1 (ρ) = max
x,πr,σ,ρ ′

(ρ+ σ (1 − ρ))
[
w (x,πr) +βW0

(
ρ ′
)]

+ (1 − σ) (1 − ρ) [w (x,π∗ (x)) +βW0 (0)]

subject to

x =φ ((ρ+ σ (1 − ρ))πr + (1 − σ) (1 − ρ)π∗ (x))

0 =σ
[
w (x,πr) +βoV0

(
ρ ′
)
− (w (x,π∗ (x)) +βoV0 (0))

]
ρ ′ =

ρ

ρ+ (1 − ρ)σ

which is the same problem as the one where the rule designer lacks commitment. Q.E.D.

E.2 Three period problem

Proposition 9. When K = 3:

1. For ρ ∈ [0, ρ̂], the optimal rules with and without commitment coincide and call for pooling
in period 0 and 1.

2. For ρ ∈ [ρ∗2, 1], the optimal rules with and without commitment coincide and call for sepa-
ration in period 0 and 1.

3. There exists ρ∗3 ∈
(
ρ̂, ρ∗2

)
such that for ρ ∈

(
ρ∗3, ρ∗2

)
the optimal rules with and without

commitment do not coincide. In particular, without commitment, it is optimal to separate in
period zero. With commitment, it is optimal to pool in period zero and commit to separation
in period one. This is achieved by committing to the most stringent rule, π, in period one.

Proof. We start with an intermediate result. For ρ ∈ [0, ρ̂]∪
[
ρ∗2, 1

]
we have that

max
V∈V1(ρ)

V = V1 (ρ) (67)

and
max
V∈V1(ρ)

W̄1 (V , ρ) = W̄1 (V1 (ρ) , ρ) =W1 (ρ) . (68)

This follows from the argument provided in part 2 and 3 of Proposition 3. Instead, for
ρ ∈

(
ρ̂, ρ∗2

)
, the rule designer and the policy maker do not agree on the continuation

outcome. In particular, for ρ in this range, the value for the optimizing type policy maker
is maximized by having separation in the second period (k = 1) because x0 (ρ) = ρπ+
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(1 − ρ)π∗ (x0 (ρ)) < πico,1 (ρ) and

max
V∈V1(ρ)

V = Vsep1 (ρ) = w (x0 (ρ) ,π∗ (x0 (ρ))) +βoV0 (0)

However, there exists ρ3 ∈
[
ρ̂, ρ∗2

]
such that for ρ ∈

(
ρ∗3, ρ∗2

)
it is optimal to pool for the rule

designer. Note that by Proposition 2 we know that for ρ ∈
(
ρ̂, ρ∗1

)
it is optimal to pool and

for ρ ∈
[
ρ∗2, 1

]
it is optimal to separate. If there is a single cutoff as in the Barro-Gordon

model, then ρ∗1 = ρ∗2 and ρ∗3 = ρ̂. If ρ∗1 6= ρ∗2 there can be multiple cutoffs in the region(
ρ∗1, ρ∗2

)
but by the definition of ρ∗2 we know that it is optimal to pool in an interval to the

left of ρ∗2,
(
ρ∗3, ρ∗2

)
=
(
ρ∗2 − ε, ρ

∗
2
)

for some ε > 0 sufficiently small. Thus for ρ ∈
(
ρ∗3, ρ∗2

)
,

max
V∈V1(ρ)

W1 (V , ρ) =W1 (ρ) = w (xico,1 (ρ) ,πico,1 (ρ)) +βW0 (ρ) 6= W̄1
(
V
sep
1 (ρ) , ρ

)
.

See Proposition 3 and Figure 5 for an illustration.
Part 1 and 2. Take ρ ∈ [0, ρ̂] ∪

[
ρ∗2, 1

]
. By the same argument provided in part 2 and 3

of Proposition 3, randomization is not optimal. Thus, since with σ ∈ {0, 1} it follows that
ρ ′ ∈ {0, ρ, 1} where (67) and (68) hold, the problem in (64) for k = 2 dropping the promise
keeping constraint (since there are no promises in the first period) reduces to

max
x,πr,ρ ′,σ∈{0,1}

(ρ+ σ (1 − ρ))
[
w (x,πr) +βW1

(
ρ ′
)]

+ (1 − σ) (1 − ρ) [w (x,π∗ (x)) +βW1 (0)]

subject to

x =φ ((ρ+ σ (1 − ρ))πr + (1 − σ) (1 − ρ)π∗ (x))

0 =σ
[
w (x,πr) +βoV1

(
ρ ′
)
− (w (x,π∗ (x)) +βoV1 (0))

]
ρ ′ =

ρ

ρ+ (1 − ρ)σ

which is the problem where the rule designer lacks commitment. The characterization
of the equilibrium outcome follows from the characterization in provided in the proof of
Proposition 3 for ρ ∈ [0, ρ̂]∪

[
ρ∗2, 1

]
.

Part 3. Consider ρ ∈
(
ρ∗3, ρ∗2

)
. In this region, we know that when rules are chosen

without commitment, the rule designer chooses to pool if the residual horizon is k = 1 but
it chooses to separate if the residual horizon is k = 2. This is because the optimizing type’s
incentive constraint is tighter when k = 2 than when k = 1 because ∆V1 (ρ) < ∆V0 (ρ) as
shown in Figure 5.

With commitment, the rule designer in period 0 can choose a stringent rule for period
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1 to induce separation in period 1 and therefore relaxing the incentive constraint in period
0. The value associated with this plan is at least

W̃2 (ρ) = w
(
x1 (ρ) ,φ−1 (x1 (ρ))

)
+βW0 (ρ) +β

2 [ρW0 (1) + (1 − ρ)W0 (0)] (69)

> W0 (ρ) +
(
β+β2

)
[ρW0 (1) + (1 − ρ)W0 (0)]

=W2 (ρ)

where the first inequality follows from the fact that for ρ ∈
(
ρ∗3, ρ∗2

)
, the value of pool-

ing in the twice repeated economy, w
(
x1 (ρ) ,φ−1 (x1 (ρ))

)
+ βW0 (ρ), is higher than the

value of separation, W0 (ρ) + β [ρW0 (1) + (1 − ρ)W0 (0)], and the last line follows from
the observation that without commitment it is optimal to separate in the first period so
W2 (ρ) = W0 (ρ) +

(
β+β2) [ρW0 (1) + (1 − ρ)W0 (0)]. This proves that the commitment

solution does not coincide with the solution without commitment for ρ ∈
(
ρ∗3, ρ∗2

)
. Under

commitment, it is optimal to pool in the first period and promise to separate in the second
period. Q.E.D.

The key insight of part 3 of the proposition is that the optimizing type’s incentive
constraint in period t is tighter if there is pooling in period t+ 1 as compared with the
case in which there is separation in t+ 1 for sufficiently high levels of reputation. Thus
the period t rule designer wants to have more stringent rules in period t+ 1 to induce
separation. This channel does not operate in a two period economy because the terminal
period’s rule designer has no instruments to incentive the optimizing type to pool and
thus there is always separation. Hence the first and second period rule designers agree
and there is no time inconsistency problem.

F Signaling game and payoff types

In this section, we contrast our characterization of the optimal rule in Section 4 with two
alternatives. First, we consider a signaling game in which the rule is chosen by the policy
maker (which knows its type) instead of the rule designer, which is uncertain about the
type of the policy maker. Second, we consider a model where the two types of policy mak-
ers differ in their preferences. In particular, policy makers can differ in their temptation
to deviate ex-post because certain policy makers can better resist pressure from interest
groups ex-post or have different preferences over outcomes than the social welfare func-
tion, as in the seminal Rogoff (1985) paper. We show that in both cases the equilibrium
outcome has separation for all levels of reputation (under a reasonable refinement), in
contrast with our main result that it is optimal to pool for low levels of reputation.

76



F.1 Comparison to a signaling game

We now consider a signaling game in which the rule is chosen by the policy maker (which
knows its type) instead of the rule designer, which is uncertain about the type of the policy
maker. If the rules are chosen by the policy makers, the commitment type (if sufficiently
patient) will choose a rule that induces separation for all levels of reputation. In particular,
it will prefer to separate for low levels of reputation even though the rule designer strictly
prefers to pool. This result mirrors the one in Dovis and Kirpalani (2020a).

Proposition 10. Under Assumptions 1 and 3, the outcome of the signaling game is such that the
commitment and optimizing types follow different policies if either i) ρ is sufficiently high or ii)
ρ is sufficiently small and βo = βc ∈

(
β, β̄

)
. Thus, in both cases there is separation after one

period.

The main idea here is that there are no dynamic gains for the commitment type of pre-
serving uncertainty. The continuation value for the commitment type is always larger in a
separating equilibrium as compared with pooling, as it can achieve the Ramsey outcome
since the private agents know that they are facing the commitment type. However, there
may still be static benefits of pooling when reputation is sufficiently low, as we saw in
Section 4.1. But if the discount factor is sufficiently high (β > β), the dynamic benefits
outweigh the static losses. Note that for this to be an equilibrium we also need the op-
timizing type to strictly prefer to separate, which requires the discount factor to be low
enough (β < β). We show that β < β, since the optimizing type has additional static ben-
efits of separating owing to the fact that it can choose its policy after the private agents
have chosen their action.

Proof of Proposition 10. We consider the case with wx < 0. Note that the statically
optimal rule chosen by the commitment type is π. To see why note that the first order
condition for the commitment type is

wπ (x,π) +wx (x,π)
φ ′ (·)

[1 −φ ′ (·) (1 − ρ)π∗x (x)]

6wπ (x,π) + [ρwx (x,π) + (1 − ρ)wx (x,π∗ (x))]
φ ′ (·)

[1 −φ ′ (·) (1 − ρ)π∗x (x)]

60

where the first inequality follows from the assumption that wxπ > 0 and the last inequal-
ity from Assumption 2. Let

Vc0 (ρ) = w (x0 (ρ) ,π) ,
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be the value for the commitment type in the terminal period given the prior ρwhere

x0 (ρ) = φ (ρπ+ (1 − ρ)π∗ (x0 (ρ))) .

We can write the value for the commitment type if it chooses to separate as

Vcsep (ρ) = w (x0 (ρ) ,π) +βVc0 (1) ,

while the value of pooling is

Vcpool (ρ) = w (φ (πico (ρ)) ,πico (ρ)) +βVc0 (ρ)

where πico solves

w (φ (πico (ρ)) ,πico (ρ)) +βV0 (ρ) = w (φ (πico (ρ)) ,π∗ (φ (πico (ρ)))) +βV0 (0) .

Therefore,

Vcsep (ρ) − V
c
pool (ρ) = [w (x0 (ρ) ,π) −w (φ (πico) ,πico)] +β [Vc0 (1) − V

c
0 (ρ)]

First note that for ρ sufficiently large separating has both dynamic gains, Vc0 (1)−V
c
0 (ρ) >

0, and static gains as [w (x0 (ρ) ,π) −w (φ (πico) ,πico)] > 0. In particular, for ρ → 1 we
have that the static gains of separating converge to

[w (φ (π) ,π) −w (φ (πico (1)) ,πico (1))]

which is positive since under our assumption that the Ramsey outcome is not sustain-
able, πico (ρ) < π. Consequently, for ρ large enough the commitment type will choose a
stringent rule and thus there will be separation.

Next, given some ρ, the commitment type would like to separate if

β > β (ρ) ≡ [w (φ (πico (ρ)) ,πico (ρ)) −w (x0 (ρ) ,π)][
Vc0 (1) − V

c
0 (ρ)

]
To show that it is optimal for the optimizing type to separate at π it must be that

w (x0 (ρ) ,π∗ (x0 (ρ))) +βV0 (0) > w (x0 (ρ) ,π) +βV0 (1)

(note that if the optimizing type mimics the commitment type the posterior jumps to one
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because we are constructing an equilibrium with separation) or

β < β̄ (ρ) ≡ [w (x0 (ρ) ,π∗ (x0 (ρ))) −w (x0 (ρ) ,π)]
V0 (1) − V0 (0)

Therefore, the equilibrium outcome of the signaling game has separation if

β̄ (ρ) > β > β (ρ)

Thus we need to show that such an interval exists. For ρ→ 0 we have

lim
ρ→0

β̄ (ρ) =
w (x0 (0) ,π∗ (x0 (0))) −w (x0 (0) ,π)

V0 (1) − V0 (0)

lim
ρ→0

β (ρ) =
w (x0 (0) ,π∗ (x0 (0))) −w (x0 (0) ,π)

Vc0 (1) − V
c
0 (0)

since πico (ρ)→ π∗ (x0 (0)). Thus to compare β̄ (0) and β (0) we only need to compare the
denominators since the numerators are identical. In particular, β̄ (0) > β (0) if and only if
V0 (1) − V0 (0) < Vc0 (1) − V

c
0 (0), or

w (x0 (1) ,π∗ (x0 (1))) −w (x0 (0) ,π∗ (x0 (0))) < w (x0 (1) ,π) −w (x0 (0) ,π)

or
w (x0 (1) ,π∗ (x0 (1))) −w (x0 (1) ,π) < w (x0 (0) ,π∗ (x0 (0))) −w (x0 (0) ,π)

Note that

w (x0 (0) ,π∗ (x0 (0))) −w (x0 (0) ,π) > w (x0 (0) ,π∗ (x0 (1))) −w (x0 (0) ,π)

so we are left to show that

w (x0 (0) ,π∗ (x0 (1))) −w (x0 (0) ,π) > w (x0 (1) ,π∗ (x0 (1))) −w (x0 (1) ,π)

Under Assumption 1, for xH > xL
ˆ
[π,π∗]

wπ (xH,π)dπ >
ˆ
[π,π∗]

wπ (xL,π)dπ

Thus, since x0 (0) > x0 (1) the inequality is satisfied. Q.E.D.
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F.2 Payoff types

So far, we have modeled the commitment type as a policy maker that cannot deviate from
the rule. An alternative to modeling the uncertainty about the policy maker’s ability to
follow the rule is to assume that the two types of policy makers differ in their preferences.
In particular, the policy makers can differ in their temptation to deviate ex-post because
certain policy makers can better resist pressure from interest groups ex-post or have dif-
ferent preferences over outcomes than the social welfare function, as in the seminal Rogoff
(1985) paper.

We next show that with preference types and a reasonable equilibrium refinement,
we have different outcomes than in our benchmark case. In particular, the equilibrium
coincides with the outcome of the signaling game and there is separation for all levels of
initial reputation.

We make our point in the context of the bailout example. Recall that the social welfare
function is

w (x,π;ψ) = −v (x) + p (x)RH −ψ (1 − p (x)) (1 − π) − c (π) ,

where x is the banker’s effort given by φ (Eπ) for some φ with φ ′ < 0, φ ′′ > 0, p (x)
is the probability that the investment succeeds, and ψ (1 − p (x)) (1 − π) is the default
cost that can be mitigated by transfers π. The parameter ψ controls the degree of time
inconsistency: if ψ = 0 then the Ramsey outcome is sustainable because there are no
benefits of deviating from the optimal plan ex-post. In contrast, if ψ is large then there is
a much larger temptation to deviate ex-post.

Suppose now that there are two types of policy makers, each associated with a differ-
ent value of ψ. The high cost type has ψ = ψH > 0, and the low cost type has ψ = ψL = 0.
The low cost type then has no incentive to deviate ex-post and thus represents the com-
mitment type in our baseline model. It also corresponds to the “conservative central
banker” in Rogoff (1985) since if the private agents know they are facing the low cost
type with probability one then the Ramsey outcome can be implemented. To keep the
symmetry with the previous analyses, we assume that the social welfare function used
by the rule designer to evaluate outcomes is w (x,π;ψH).

Consider the twice-repeated problem. The characterization in the terminal period
does not change relative to the case analyzed previously. Thus, the value for the rule
designer is W0 (ρ), where ρ is the prior of facing the low cost type, the value for the
high cost type is V0 (ρ;ψH) = V0 (ρ), and the value for the low cost type is V0 (ρ; 0) =

w (x0 (ρ) ,π = 0).
Consider now the rule designer’s problem in the first period. The difference with
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problem (9) is that we have to add an incentive compatibility constraint for the low cost
type,

w (x,πr; 0) +βoV0
(
ρ ′c; 0

)
> w (x,π; 0) +βoV0

(
ρ ′ (π) ; 0

)
∀π,

where ρ ′ (π) is the posterior after observing policy π and the low cost type’s discount
factor is βo. Sincewπ (x,π; 0) = 0 for all (x,π) then we can rewrite the constraint above as
βoV0 (ρ

′
c; 0) > βoV0 (ρ

′ (π) ; 0) or, since V0 (ρ; 0) is strictly increasing in ρ, as

ρ ′c = ρ
′ (πr) > ρ ′ (π) ∀π. (70)

The incentive compatibility constraint for the low type, (70), is satisfied in the sepa-
ration regime as ρ ′c = 1 so the rule designer can attain the same value. We now turn to
analyze whether the pooling regime is feasible. The answer to this question depends on
the specification of off-path beliefs. Clearly, it is possible to specify the off-path beliefs as
follows

ρ ′ (π) =

ρ if π = πr

0 if π 6= πr
. (71)

This choice is consistent with Bayes’ rule on-path, trivially satisfies (70), and so supports
the pooling outcome described above. An unappealing feature of (71) is that implement-
ing more stringent policies ex-post reduces the policy maker’s reputation. If we restrict
to specifying beliefs such that ρ ′ (π) is strictly decreasing in π then pooling is not feasible
and the separating regime is the only solution for all levels of reputation. The restriction
is intuitive as it imposes that if the deviation is relatively more advantageous for the low
cost type then the posterior rises after enforcement
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