Discussion of "Central Bank Balance Sheet Policies without Rational Expectations" by Iovino and Sergeyev

> Alessandro Dovis U Penn and NBER

> > IFM Meeting Spring 2018

Context

 $\bullet\,$ General idea:

Monetary policy operates by affecting (or reacting to) risk

Atkeson-Kehoe NBER macro-annual, Alvarez-Atkeson-Kehoe JPE, RESTUD

- Standard model: Monetary policy operates by affecting inter-temporal substitution
- Few (but growing) theoretical papers analyze link between monetary policy and risk
 - $\circ~$ Segmented markets/limited participation
 - $\circ~$ Liquidity provision
- This paper: "bounded rationality"

My discussion

- 2 period model to review mechanism
- Compare to dinky limited participation model
- Comments
 - $\circ~$ Lack of learning and novel vs. usual policy tools
 - \circ Transmission channel + objective separate?

Example Economy

• t = 0, 1

- State in period 1 is $s \in S$ distributed according to $p(\cdot)$
- Endowment:

$$\begin{array}{l} \circ \ t=1: \ y \\ \circ \ t=2: \ y \left(s\right)=y+\theta \left(s\right) \end{array}$$

• Measure one of agents with preferences

$$u\left(c_{1}\right)+\beta\sum_{s}p\left(s\right)u\left(c_{2}\left(s\right)\right)$$

where \boldsymbol{u} increasing and strictly concave

Assets and policies

- Two assets:
 - Claims to risky component of output in period 2: $\theta(s)$
 - Risk free debt
 - \circ y is labor income
- QE-like policy:
 - In period 0: buy shares of risky assets, ω^{gov} , and issue risk free debt, B, backed by lump sum taxes in period 1, T(s)
 - $\circ \ \mathrm{Policy} \pi = \left(\omega^{\mathrm{gov}} \text{ , } B, T\left(s\right) \right)$
 - $\circ~$ Policy can be indexed by $\omega^{\rm gov}$

Equilibrium

Given $\omega^{\rm gov}$, an equilibrium is hh's allocation, policy $\pi,$ and asset prices (r,q) such that

• hh's allocation solves

$$\max u(c_{1}) + \beta \sum_{s} p(s) u(c_{2}(s))$$

subject to

$$\begin{split} c_{1} + \omega q + \frac{b}{1+r} \leqslant q + y \\ c_{2}\left(s\right) \leqslant y + \omega \theta\left(s\right) + b - T\left(s\right) \end{split}$$

• gov't budget constraints

$$\begin{split} \frac{B}{1+r} &= \omega^{gov} q \\ T\left(s\right) &= B - \omega^{gov} \theta\left(s\right) \end{split}$$

• market clearing

$$\begin{split} B &= b \\ \omega^{\rm gov} + \omega &= 1 \end{split}$$

Wallace irrelevance result in example

• For all feasible π :

$$q = \frac{\beta \sum_{s} p(s) u'(y + \omega \theta(s) + b - T(s)) \theta(s)}{u'(y + (1 - \omega) q - b/(1 + r))}$$
$$\frac{1}{1 + r} = \frac{\beta \sum_{s} p(s) u'(y + \omega \theta(s) + b - T(s)) \theta(s)}{u'(y + (1 - \omega) q - b/(1 + r))}$$

• Using gov't budget constraints and market clearing:

$$q = \frac{\beta \sum_{s} p(s) u'(y + \theta(s)) \theta(s)}{u'(y)}$$
$$\frac{1}{1 + r} = \frac{\beta \sum_{s} p(s) u'(y + \theta(s))}{u'(y)}$$

 $\Rightarrow \omega^{\rm gov} \; {\rm does \; not \; affect \; asset \; prices}$

Deviation from rational expectations

- There is one way to be rational, many ways to be "irrational"
 Need to choose how to deviate
- hh's problem

$$\mathsf{max}\,\mathfrak{u}\left(c_{1}\right)+\beta\sum_{s}\tilde{p}\left(s\right)\!\mathfrak{u}\left(c_{2}\left(s\right)\right)$$

subject to

$$c_1 + \omega q + \frac{b}{1+r} \leqslant q + y$$

$$c_{2}(s) \leq y + \omega \theta(s) + b - T(s)$$

- Household needs to know::
 - $\circ \tilde{p}(s)$: distribution of s
 - not really pertinent to think about changes in policy
 - $\circ~\tilde{T}\left(s\right)$: taxes next period in each state
 - focus of the paper

Level-1 agents

- Suppose we start the economy with $\omega^{\text{gov}} = 0$ $\Rightarrow T(s) = 0$ for all s
- Change in policy: gov't buys some risk asset $\omega^{\rm gov}~=\Delta>0$
- Agents' expectations:
 - know physical probabilities $\tilde{p}(s) = p(s)$ and $\theta(s)$
 - do not expect changes in taxes tomorrow so $\tilde{T}(s) = 0$

Equilibrium with level-1 agents

Given $\tilde{T}\left(s\right)=0,$ an equilibrium is hh's allocation, policy and asset prices (r,q) such that

• hh's allocation solves

$$\max u(c_{1}) + \beta \sum_{s} p(s) u(c_{2}(s))$$

subject to

$$\begin{split} c_{1} + \omega q + \frac{b}{1+r} \leqslant q + y \\ c_{2}\left(s\right) \leqslant y + \omega \theta\left(s\right) + b - \tilde{T}\left(s\right) \end{split}$$

• gov't budget constraint

$$\begin{split} \frac{B}{1+r} &= \omega^{\mathrm{gov}} q \\ T\left(s\right) &= -\omega^{\mathrm{gov}} \theta\left(s\right) + B \end{split}$$

• market clearing

$$B = b$$

 $\omega^{gov} + \omega = 1$

SDF with level-1 agents

• The sdf is

$$m_{1}(s) = \frac{\beta p(s) u' \left(y + \omega \theta(s) + b(1 + r) - \tilde{T}(s)\right)}{u' (y + (1 - \omega) q - b)}$$

Imposing market clearing

$$B = b$$
, $\Delta + \omega = 1$

 \mathbf{SO}

$$m_{1}(s) = \frac{\beta p(s) u' \left(y + (1 - \Delta) \theta(s) + B(1 + r) - \tilde{T}(s) \right)}{u' (y + \Delta q - B)}$$

from current gov't budget constraint in period 1, $\mathsf{B}=\Delta q$ so

$$\begin{split} \mathfrak{m}_{1}\left(s\right) &= \frac{\beta p\left(s\right) \mathfrak{u}'\left(y + \left(1 - \Delta\right) \theta\left(s\right) + \Delta q\left(1 + r\right) - \tilde{T}\left(s\right)\right)}{\mathfrak{u}'\left(y\right)} \\ &= \frac{\beta p\left(s\right) \mathfrak{u}'\left(y + \left(1 - \Delta\right) \theta\left(s\right) + \Delta q\left(1 + r\right)\right)}{\mathfrak{u}'\left(y\right)} \end{split}$$

Prices with level-1 agent

• So
$$(q, 1+r)(\Delta)$$
 solve

$$q = \sum_{s} \frac{\beta p(s) u'(y + (1 - \Delta) \theta(s) + \Delta q(1 + r)) \theta(s)}{u'(y)}$$
$$\frac{1}{1 + r} = \sum_{s} \frac{\beta p(s) u'(y + (1 - \Delta) \theta(s) + \Delta q(1 + r))}{u'(y)}$$

Higher Δ reduces risk premium

• Say
$$\Delta = 1$$

$$\frac{1}{1+r} = \sum_{s} \frac{\beta p(s) u'(y + \mathbb{E}\theta)}{u'(y)} = \frac{\beta u'(y + \mathbb{E}\theta)}{u'(y)}$$
$$q = \frac{1}{1+r} \sum_{s} p(s) \theta(s) = \frac{\mathbb{E}\theta}{1+r}$$

so there is no risk premium

Level-k agents

Level-2:

• Agents expect others to be level-1 agents so level-2 agents belief taxes are going to be equal to

$$\tilde{\mathsf{T}}\left(s\right) = \mathsf{T}_{1}\left(s\right) = -\Delta\left(\theta\left(s\right) - \frac{1 + r_{1}}{q_{1}}\right)$$

Level-k:

• Agents expect others to be level-(k-1) agents

Alternatives

- Other form of deviations from RE
 - $\circ~{\rm robustness}$
 - \circ learning
- Segmented markets/limited participation
- Liquidity role of debt
 - $\circ~$ it may depend from overall portfolios of risky assets
 - $\circ~$ Are taxes short position of an asset? if so no changes

Dinky model of limited participation

- Suppose two types of agents
 - $\circ\,$ traders: can trade risky asset and gov't bond, endowed with claims to risky asset, fraction $\mu\,$
 - $\circ~$ non-traders: cannot trade assets, hand-to-mouth, fraction $1-\mu$
- Government can also trade in asset markets
 - $\circ\,$ issue bond B to finance purchases $\omega^{\rm gov}\,$ of the risky asset
 - $\circ~$ tax all agents to balance budget in period 2

 \Rightarrow QE like policy effectively shares risk circumventing limited market participation (fixed costs ...)

Compare asset prices

• Limited participation:

$$q = \sum_{s} p(s) \frac{\beta u' \left(y + \frac{1 - (1 - \mu)\Delta}{\mu} \theta(s) - \Delta q(1 + r) \right) \theta(s)}{u'(y)}$$
$$\frac{1}{1 + r} = \sum_{s} p(s) \frac{\beta u' \left(y + \frac{1 - (1 - \mu)\Delta}{\mu} \theta(s) - \Delta q(1 + r) \right)}{u'(y)}$$

• Level-1:

$$q = \sum_{s} p(s) \frac{\beta u'(y + (1 - \Delta) \theta(s) + \Delta q(1 + r)) \theta(s)}{u'(y)}$$
$$\frac{1}{1 + r} = \sum_{s} p(s) \frac{\beta u'(y + (1 - \Delta) \theta(s) + \Delta q(1 + r))}{u'(y)}$$

How to distinguish?

- Look at expectations?
 - in model with heterogeneity: is there a way to look at joint behavior of expectations and trades?
- How to distinguish from other forms of deviation from RE • like robustness?

Learning: Novel vs. normal policy tools

- No notion of learning from observations
 - $\circ~$ "Learning how to play": increase level from k to k+h
 - $\circ~$ Observation of past experiences does not affect expectations
- If QE-like policies are business as usual
 - $\circ\,$ if agents are "econometrician" will eventually learn $T\left(s|\Delta_{-}\right)$
 - but it can exploit it first time it uses it
- Can see if systematic expectation errors there there for new policy but not for regular policy?

Monetary policy in normal times?

- General theme: monetary policy works by affecting risk premia
- Want to think of all open market operations as QE-like policy?
- To analyze effects of given policy starting point is $\mathsf{T}\left(s\right)$ at staus quo policy
 - $\circ~$ Reasonable for one unexpected deviation from "normal" policy or novel policy tool
 - $\circ~$ what about stochastic environment with instruments often used?

Transmission channel + policy objective

- Government wants to affect asset prices because of ...
 - o increase net worth of financial intermediaries/constrained agents
 - $\circ~$ reducing risk premia to foster investment
 - $\circ~$ devalue currency to improve competitiveness
 - o ...
- Should we think of transmission channel + objective separately?
- Or transmission mechanism may be related to objective
 change in asset prices is manifestation that policy achieves its objective